GENETIC TRANSFORMATION OF EGYPTIAN WHEAT WITH 1DX5 HIGH-MOLECULAR-WEIGHT GLUTENIN SUBUNIT GENE

Authors

  • A. H. FAHMY Plant Genetic Transformation Dept., Agric. Genet. Eng. Res. Inst. (AGERI), ARC, Egypt
  • M. ABDALLAH Plant Genetic Transformation Dept., Agric. Genet. Eng. Res. Inst. (AGERI), ARC, Egypt
  • K. S. ABDALLA Plant Molecular Biology Dept., Agric. Genet. Eng. Res. Inst. (AGERI), ARC, Egypt

Abstract

Variation in the composition of the high-molecular-weight glutenin subunits (HMW-GS) of wheat is associated with large differences in the bread-making properties. The primary aim of this work was to produce transgenic Egyptian wheat cultivar (Giza 164) with HMW-GS gene (1DX5) to improve bread-making quality. Immature embryo-derived calli were cotransformed with pK-DX5 and pACH25 plasmids containing gus and bar genes using biolistic bombardment. Stable integration and expression of marker genes were detected in seven plants. However, the expression of 1DX5 gene was confirmed in five plants using SDS-PAGE analysis.

References

Abdalla, K. S., M. Abdallah and H. F. Ashraf (2008). Development of Egyptian barley with HMW-GS Dy10 gene of wheat. Arab J. Biotech., 11: 159-168.

Abdalla, K. S., A. H. Fahmy, M. Abdallah and J. Bradova (2011). Allelic variation of high molecular weight glutenin subunits in Egyptian wheat varieties. Arab J. Biotech., 14: 225-234.

Abdallah, M., A. H. Fahmy, K. Abdalla and W. Maaty (2004). Transformation of a high-molecular-weight (HMW) glutenin subunit Dy10 gene into maize. Arab J. Biotech., 7: 165-172.

Altpeter, F., V. Vasil, V. Srivastava and I. K. Vasil (1996). Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat. Biotechnol., 14: 1155-1159.

Alvarez, M. L., S. Guelman, N. G. Halford, N. Ryboshkina, P. Shewry, J. Stein, and R. H. Vallejos (2000). Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet., 100: 319-327.

Anderson, O. D. and F. C. Greene (1989). The characterization and comparative analysis of high-molecular- weight glutenin genes from genomes A and B of hexaploid bread wheat. Theor. Appl. Genet., 77: 689-700.

Anderson, O. D., F. C. Greene, R. E. Yip, N. G. Halford, P. R. Shewry and J. M. Melpica-Romero (1989). Nucleotide sequences of the two high- molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyene. Nucleic Acid Res., 17: 461-462.

Barro, F., L. Rooke, F. Bekes, P. Gras, A. S. Tatham, R. Fido, P. A. Lazzeri, P. R. Shewry and P. Barcelo (1997). Transformation of wheat with high molecular- weight subu- nit genes results in improved func- tional properties. Nat. Biotechnol., 15: 1295-1299.

Blechl, A. E. and O. D. Anderson (1996). Expression of a novel high- molecular-weight glutenin subunit gene in transgenic wheat. Nat. Biotechnol., 14: 875-879.

Blechl, A. E., H. Q. Le, F. Bekes, P. W. Gras, Y. Shimoni, G. Galili and O. D. Anderson (1997). Applications of molecular biology in understanding and improving wheat quality. In: Steele J. L., Chung O. K. (eds) Proc. Int. Wheat Quality Conf., Grain Industry Alliance, Manhattan, Kan., p. 205-211.

Cho, M. J., W. Jiang and P. O. Lemaux (1998). Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci., 138: 229-244.

Cooke, R. J. and J. R. Law (1998). Seed storage protein diversity in wheat varieties. Plant Varieties and Seeds, 11: 159-167.

Fahmy, A. H., Y. H. El-Shafy, O. M. El-Shihy and M. A. Madkour (2004). A highly efficient regeneration system via somatic embryogenesis from immature embryos of Egyptian wheat cultivars (Triticum aestivum L.) using different growth regulators. Arab J. Biotech., 7: 229-238.

Fahmy, A. H., Y. H. El-Shafy, O. M. El-Shihy and M. A. Madkour (2006). Genetic transformation of Egyptian wheat cultivars (Triticium aestivum L.) via biolistic bombardment using different constructs. American-Eurasian J. Agric. And Environ. Sci., 1: 58-69.

Harwood, W. A., S. M. Ross, P. Cilento and J. W. Snape (2000). The effect of DNA/gold particle preparation technique and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica, 111: 67-76.

Jefferson, R. A., T. A. Kavanagh and M. W. Bevan (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907.

Laemmli, V. K. (1970). Cleavage of structural proteins during assembly of the head bactriophage. Nature, 227: 680-685.

Lawrence, G. J. and K. W. Shepherd (1981). Chromosomal location of genes controlling seed protein in species related to wheat. Theor. Appl. Genet., 59: 25-31.

Lonsdale, D. M., S. Lindup, L. J. Moisan and A. J. Harvey (1998). Using firefly luciferase to identify the transition from transient to stable expression in bombarded wheat scutellum tissue. Physiol Plant., 102: 447-458.

Muller, E., H. Lorz and S. Lutticke (1996). Variability of transgene expression in clonal cell lines of wheat. Plant Sci., 114: 71-82.

Payne, P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu. Rev. Plant Physiol., 38: 141-153.

Payne, P. I., L. M. Holt and A. G. Worland (1982). Structure and genetical studies on the HMW-GS: Telocentric mapping of the subunits genes on the long arm of the homoeologous group chromosomes, Thero. Appl. Genet., 63: 129-138.

Payne, P. I., L. M. Holt, A. F. Krattiger and J. M. Carrillo (1988). Relationship between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. J. Cereal Sci., 7:229-235.

Payne, P. I., M. A. Nightingale, A. F. Krattiger and L. M. Holt (1987). The relationship between HMW glutenin subunit composition and the breadmaking quality of British grown wheat varieties. J. Sci. Food. Agric., 40: 51-65.

Popineau, Y., M. Cornec and J. Lefebvre (1994). Influence of HMW-GS polymers and rheological properties of near-isogenic lines of wheat. Sicco, J. Cereal Sci., 19: 231-241.

Razin, A. (1988). CpG methylation, chromatin structure and gene silencing, the three way interaction. EMBO J., 7: 4905-4908.

Rooke, L., F. Bekes and R. Fido (1999). Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci., 30: 115-120.

Schroeder, H. E., A. H. Schotz, T. Wardley-Richardson, D. Spencer and T. J. V. Higgins (1993). Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol., 101:751-757.

Shewry, P. R. (1994). Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality. Transgenic Res., 3: 3-12.

Shewry, P. R., N. G. Halford, A. S. Tatham, Y. Popineau, D. LaWandra and P. S. Belton (2003). The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv. Food Nutr. Res., 45: 221-302.

Shimoni, Y., A. E. Blechl, O. D. Anderson and G. Galili (1997). A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J. Biol. Chem., 272: 15488-15495.

Thompson, R., N. P. Harberd and R. B.Flavell (1983). Characterization of the multigene family coding for HMW-GS in wheat using cDNA clones. Thero. Appl. Genet., 67: 87-96.

Wan, Y. and P. G. Lemaux (1994). Generation of large numbers of independently transformed fertile barley plants. Plant Physiol., 104: 37-48.

Downloads

Published

2016-01-12

Issue

Section

Articles

Most read articles by the same author(s)