GENETIC TRANSFORMATION OF EGYPTIAN WHEAT (Triticum aestivum L.) WITH CHITINASE GENE VIA MICROPROJECTILE BOMBARDMENT
Abstract
Plant diseases are caused by a variety of plant pathogens including fungi, and their management requires the use of techniques like transgenic technology and genetics. The chitinase gene, known to have a vital role in fungal disease defense, was introduced into the Egyptian wheat cv. Giza 164 via biolistic bombardment. Immature embryo derived calli were sub-cultured on CIMB medium containing bialaphos. After six weeks, the survived embryogenic calli were placed on MSRB regeneration selection medium. Finally, the green regenerated shoots produced were then transferred onto FMSB rooting selection medium. After the two weeks, healthy rooted plantlets were established under the rooting selection medium, and were then transferred into soil pots, then incubated in control growth chamber for acclimatization and subsequently trans-ferred to greenhouse until seed setting. In-tegration of the transgene with a transfor-mation frequency of 1.8% was confirmed by PCR and dot-blot analyses.References
Biesaga, J., J. Koscielniak and A. Janeczko (2010). The impact of zearalenone and thidiazuron on indire plant regeneration of oilseed rape and wheat. Acta Physiologiae Plantarum, 32: 1047-1053.
Chauhan, H., S. A. Desai and P. Khurana (2007). Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tissue and Organ Culture, 91: 191-199.
Chen, W. P., P. D. Chen, D. J. Liu, R. Kynast, B. Friebe, R. Velazhahan, S. Muthukrishnan and B. S. Gill (1999). Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet., 99: 755-760.
Cho, J., H. Hur-HanSun and L. JangYong (2004). Screening of Korean rice cultivars for their shoot regenera-tion ability in vitro and the effect of maltose on shoot regeneration. Ko-rean Journal of Breeding, 3: 229-236.
Collinge, D. B., K. M. Kragh, J. D. Mikkelsen, K. K. Nielsen, U. Rasmussen and K. Vad (1993). Plant chitinases. Plant J., 3: 31-40.
Daniell, H., M. Krishnan and B. F. Mcfadden (1991). Transient expression of β-glucurobidase in different cellular compartments following Biolistic delivery of foreign DNA into wheat leaves and calli. Plant Cell Report, 9: 615-619.
Datta, K., M. Rai, N. Baisakh, N. Oliva, M. T. Khin, J. M. Tu and S. K. Datta (2004). Transgenesis-breeding for multiple plant protection in rice. Philippine Journal of Crop Science, 29: 33-43.
Fahmy, A. H. and O. M. El-Shihy (2006). Improvement of plant regeneration from long-term callus cultures of two Egyptian wheat cultivars. World Journal of Agricultural Sciences, 2: 274-281.
Fahmy, A. H., K. S. Abdalla and M. Abdallah (2007). Integration and expression of the high-molecular-weight glutenin subunit Dy10 gene into Egyptian wheat. Arab Journal of Biotechnology, 10: 49-56.
Fahmy, A. H., Y. H. El-Shafy, O. M. El-Shihy and M. A. Madkour (2006). Highly efficient regeneration via somatic embryogenesis from immature embryos of Egyptian wheat cultivars (Triticum aestivum L.) using different growth regulators. World Journal of Agricultural Sciences, 2: 282-289.
Graham, L. S. and M. B. Sticklen (1994). Plant chitinases. Can. J. Bot., 72: 1057-1083.
He, Y., H. D. Jones, S. Chen, X. M. Chen, D. W. Wang, K. X. Li, D. S. Wang and L. Q. Xia (2010). Agrobacterium-mediated trans-formation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. Journal of Experimental Botany, 61: 1567-1581.
Huang, X., W. Jain, D. Zhen, Z. Chen, L. Lan and X. Zinqin (2013). Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24. Transgenic Research, 22: 939-947
Jefferson, R. A., T. A. Kavanagh and M. W. Bevan (1987). GUS fusion: be-ta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6: 3901-3907.
Khamrit, R., J. Prasit and B. Sumontip (2012). Callus induction, regeneration and transformation of sugarcane (Saccharum officinarum L.) with chitinase gene using particle bombardment. African Journal of Biotechnology, 11: 6612-6618.
Kim, J. K., I. C. Jang, R. Wu, W. N. Zuo, R. S. Boston, Y. H. Lee, I. P. Ahn and B. H. Nahm (2003). Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Research, 12: 475-484.
Krishnaveni, S., J. M. Jeoung, S. Muthukrishnan and G. H. Liang (2001). Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. Journal of Genetics & Breeding, 55: 151-158.
Leah, R., H. Tommerup, I. Svendsen, and J. Mundy (1991). Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem., 266: 1564-1573.
Li, Duo-Chuan (2006). Review of fungal chitinases. Mycopathologia, 161: 345-360.
Mahmood, I., Z. Ahmed, M. Munir, S. I. Malik and K. Shahzad (2009). Effect of sorbitol on callus induction and plant regeneration in wheat. African Journal of Biotechnology, 8: 6529-6535.
Monostori, T., E. Rozik, T. G. Bus and L. Tanacs (2008). The use of field grown plant material in somatic tissue cultures of spring wheat genotypes. Cereal Research Communications, 36: 1135-1138.
Munazir, M., R. Qureshi, G. M. Ali, U. Rashid, S. Noor, K. Mehmood, S. Ali and M. Arshad (2010). Primary callus induction, somatic embryogenesis and regeneration studies in selected elite wheat varieties from Pakistan. Pakistan Journal of Botany, 42: 3957-3965.
Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.
Nandakumar, R., S. Babu, K. Kalpana, T. Raguchander, P. Balasu-bramanian and R. Samiyappan (2007). Agrobacterium-mediated trans-formation of indica rice with chitinase gene for enhanced sheath blight resistance. Biologia Plantarum, 51: 142-148.
Nishizawa, Y., Z. Nishio, K. Nakazono, M. Soma, E. Nakajima, M. Ugaki and T. Hibi (1999). Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor. Appl. Genet., 99: 383-390.
Raja, N. I., H. Rashid, A. Bano and Z. Chaudhry (2008). Effect of growth regulators on enhanced plant regeneration from embryo derived calli of wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Research, 21: 65-71.
Rashid, H., Z. Chaudhry and M. H. Khan (2011). Effect of explant plant source and acetosyringone concentration on transformation efficiency of wheat cultivars. African Journal of Biotechnology, 10: 8737-8740.
Schroeder, H. E., A. H. Schotz, T. Wardley-Richardson, D. Spencer, and T. J. V. Higgins (1993). Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol., 101: 751-757.
Shi, Z. Y., G. X .Yin, L. P. Du, H. J. Xu, and X. G. Ye ( 2011). Plant regeneration and Agrobacterium-mediated transformation using large immature embryos of wheat. Scientia Agricultura Sinica, 44: 225-232.
Shin, S. H., C. A. Mackintosh, J. Lewis, S. J. Heinen, L. Radmer, R. Dill-Macky, G. D. Baldridge, R. J. Zeyen and G. J. Muehlbauer (2008). Transgenic wheat ex-pressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. Journal of Experimental Botany, 59: 2371-2378.
Sridevi, G., N. Sabapathi, P. Meena, R. Nandakumar, R. Samiyappan, S. Muthukrishnan and K. Veluthambi (2003). Transgenic indica rice variety Pusa Basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. Journal of Plant Biochemistry and Biotechnology, 12: 93-101.
Thompson, C. J., N. R. Movva, R. Tizard, R. Crameri, J. E. Davies, M. Louwereys and J. Botterman (1987). Characterization of the herbicide resistance gene bar from streptomyces hygroscopicus. The EMBO Journal, 6: 2519-2523.
Tobias, D. J., M. Manoharan, C. Pritsch and L. S. Dahleen (2007). Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon). Plant Cell Rep., 26: 631-639.
Varshney, A. and F. Altpeter (2002). Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Molecular Breeding, 8: 295-309.
Wada, Y., N. A. Carsono, L. Tong and T. Yoshida (2009). Genetic transformation of a high molecular weight glutenin (Glu-1Dx5) to rice cv. Fatmawati. Plant Production Science, 12: 341-344.
Wani, S. H. (2010). Inducing fungus-resistance into plants through biotechnology. Not. Sci. Biol., 2: 14-21
Weeks, J. T., O. D. Anderson and A. E. Blechl (1993). Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiology, 102: 1077-1084.
Yao, Q., L. Cong, G. Y. He, J. L. Chang, K. X. Li and G. X. Yang (2007). Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Molecular Biology Reports, 34: 61-67.
Yu, Y., J. Wang, M. L. Zhu and Z. M. Wei (2008). Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breeding, 127: 249-255.