PROTEOMICS APPROACH FOR IDENTIFYING SALT STRESS RELATED PROTEINS IN BARLEY LEAVES

Authors

  • K. S. ABDALLA Department of Plant Molecular Biology, AGERI, ARC, 9 Gamaa St. Giza, 12619, Egypt

Abstract

To understand the molecular basis of the salt stress response in barley, a proteomic approach was used to identify the salt stress-responsive proteins. Here we report proteomic analysis of barley leaves under 150 mM sea salt treatment. Proteins from control and salt treated samples were extracted and separated using two-dimensional gel electrophoresis. A total of 15 protein spots were exhibited considerable changes. The protein spots were identified by mass spectrometry and database searching. Identified proteins included those involved in metabolism, antioxidant enzymes, energy, photosynthesis, and protein degradation.

References

Abbasi, F. M. and S. Komatsu (2004). A proteomic approach to analyze salt responsive proteins in rice leaf sheath. Proteomics, 4: 2072-2081.

Aghaei, K., A. A. Ehsanpour and S. Komatsu (2008). Proteome analysis of potato under salt stress. Journal of Proteome Research, 7: 4858-4868.

Al-Karaki, G. N. (2001). Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity. J. Plant Nutr., 24: 511-522.

Apse, M. P. and E. Blumwald (2007). Na+ transport in plants. FEBS Lett., 581: 2247-2254.

Borland, A., S. Elliott, S. Patterson, T. Taybi, J. Cushman, B. Pater and J. Barnes (2006). Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden? J. Exp. Bot., 57: 319-328.

Caruso, G., C. Cavaliere, C. Guarino, R. Gubbiotti, P. Foglia and A. Lagana (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 391: 381-390

Claes, B., R. Dekeyser, R. Villarroel, M. Van den Bulcke, G. Bauw, M. Van Montagu and A. Caplan (1990). Characterization of a rice gene showing organ specific expression in response to salt-stress and drought. Plant Cell, 2: 19-27.

Dooki, A. D., F. J. Mayer-Posner, H. Askari, A. A. Zaiee and G. H. Salekdeh (2006). Proteomic responses of rice young panicles to salinity. Proteomics, 6: 6498-6507.

Forster, B. P., J. R. Russell, R. P. Ellis, L. I. Handley, D. Robinson, C. A. Hackett, E. Nevo, R. Waugh, D. C. Gordon, R. Keith and W. Powell (1997). Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol., 137: 141-147.

Francois, L. E. and E. V. Mass (1999). Crop response and management of salt-affected soils. In Pessarakli M (ed) Handbook of Plant and Crop Stress, 2nd edn. Marcel-Dekker, New York, 169-201.

Glenn, E. P. and J. J. Brown (1998). Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soils. American Journal of Botany, 85: 10-16.

Hashiguchi, A., N. Ahsan and S. Komatsu (2010). Proteomics application of crops in context of climatic changes. Food Res. Int., 43: 1803-1813.

Huang, J., H. Zhang, J. Wang and J. Yang (2003). Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol. Biol. Rep., 30: 223-227.

Hurkman, W. J. and C. K. Tanaka (1986). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol., 81: 802-806.

Khan, M. A., I. A. Ungar and M. Showalter (2000). Effects of salinity on growth, water relations and Ion accumulation of the subtropical perennial Halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85: 225-232

Lee, D. G., N. Ahsan, S. H. Lee, J. J. Lee, J. D. Bahk, K. Y. Kang and B. H. Lee (2009). Chilling stress-induced proteomic changes in rice roots. J. Plant Physiol., 166: 1-11.

Mano, Y. and K. Takeda (1997). Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica, 94: 263-272

Martinez, J. P., L. Stanley and A. Schanck (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? Journal of Plant Physiology, 161: 1041-1051.

Minarik, P., N. Tomaaskova, M. Kollarova and M. Antalik (2002). Malate dehydrogenases-structure and function. Gen. Physiol. Biophys., 21: 257-265.

Mock, H. P. and A. Matros (2008). Proteome analysis of cellular responses to abiotic stresses in plants. In: Agrawal GK, Rakwal R, editors. Plant proteomics. Technologies, strategies, and applications. New Jersey, USA: Wiley-Interscience, 605-627.

Munns, R. and H. M. Rawson (1999). Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust. J. Plant Physiol., 25: 459-464

Ndimba, B. K., S. Chivasa, W. J. Simon and A. R. Slabas (2005). Identification of Arabidopsis salt and osmotic stress responsive proteins using two dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 5: 4185-4196.

Pardo, J. M., B. Cubero, E. O. Leidi and F. J. Quintero (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot., 57: 1181-1199.

Parida, A. K. and A. B. Das (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf., 60: 324-349.

Parida, A. K., A. B. Das and B. Mittra (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct. Funct., 18: 167-174.

Sarhadi, E., S. Mahfoozi, S. A. Hosseini and G. H. Salekdeh (2010). Cold acclimation proteome analysis reveals close link between the upregulation of low temperature associated proteins and vernalization fulfillment, Journal of Proteome Research, 9: 5658-5667.

Sottosanto, J. B., Y. Saranga and E. Blumwald (2007). Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short-term and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol., 7: 18-33

Sugihara, K., N. Hanagata, Z. Dubinsky, S. Baba and I. Karube (2000). Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol., 41: 1279-1285.

Suzuki, N., L. Rizhsky, H. Liang, J. Shuman, V. Shulaev and R. Mittler (2005). Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol., 139: 1313-1322.

Tanaka, N., S. Mitsui, H. Nobori, K. Yanagi and S. Komatsu (2005). Expression and function of proteins during development of the basal region in rice seedlings. Mol. Cell Proteomics, 4: 796-808.

Tsai, Y. C., C. Y. Hong, L. F. Liu and C. H. Kao (2005). Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J. Plant Physiol., 162: 291-299.

Vaidyanathan, H., P. Sivakumar1, R. Chakrabarty and G. Thomas (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci., 165: 1411-1418.

Wang, X., P. Fan, H. Song, X. Chen, X. Li and Y. Li (2009). Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J. Proteome Res., 8: 3331-3345.

Zang, X. and S. Komatsu (2007). A proteomics approach for identifying osmotic-stress related proteins in rice. Phytochem., 68: 426-437.

Zhao, J., K. Zuo and K. Tang (2004). cDNA cloning and characterization of enolase from Chinese cabbage, Brassica campestris ssp. Pekinensis. DNA Seq., 15: 51-57.

Downloads

Published

2016-01-12

Issue

Section

Articles