DETECTION OF FMS-related tyrosine kinase-3 (FLT3) MUTA- TIONS PROFILE IN EGYPTIAN HEPATOCELLULAR CARCI- NOMA PATIENTS

Authors

  • MANAL O. EL HAMSHARY Department of Molecular Diagnostic and Therapeutic, Genetic Engineering and Biotechnology Research Institute, University of Sadat city
  • MOHAMED AWAD Department of Molecular Diagnostic and Therapeutic, Genetic Engineering and Biotechnology Research Institute, University of Sadat city
  • RANDA M. TALAAT Department of Molecular Diagnostic and Therapeutic, Genetic Engineering and Biotechnology Research Institute, University of Sadat city
  • MUSTAFA A. SAKR Department of Molecular Diagnostic and Therapeutic, Genetic Engineering and Biotechnology Research Institute, University of Sadat city
  • MOHAMED K. KHALIFA Children Cancer Hospital, 57357
  • EHAB A. AHMED Chemistry Department, Faculty of Science, Cairo University
  • GHADA M. NASR Department of Molecular Diagnostic and Therapeutic, Genetic Engineering and Biotechnology Research Institute, University of Sadat city

Abstract

Background and objective: Hepatocellular carcinoma (HCC) is the third most common cancer globally and a major cause of mortality. Despite advancements in early treatment, advanced cases often have a poor prognosis due to high rates of recurrence. Understanding the disease's underlying mechanisms and associated genetic abnormalities is crucial for effective treatment. Recent research that sequenced all of the coding exons in HCC has provided fresh insight into the genetic characteristics of this cancer. Patients and methods: In this crosssectional study, 21 HCC Egyptian individuals were included and the FLT3 mutations in those individuals were detected using a special Next generation sequencing (NGS) panel (AmpliSeq). In addition, study the associations between these mutations and patient clinical characteristics. Results: In all 21 patients who underwent FLT3 gene sequencing, mutations were identified in (81%) patients. When compared to the genomic control, there were 36 somatic mutations were detected, of these (80.6%) were single nucleotide variants (SNVs), Among SNVs, (20.7%) were synonymous, (27.6%) were non-synonymous, and (51.7%) were coding sequence variants. Conclusion: It was concluded from this research that detection of numerous somatic mutations of FLT3 can assist in the etiology of HCC.

References

Al-Haimi M., Hamid G. A. and Ahmed A. S., (2018). Hepatocellular carcinoma in Yemen: Epidemiology and clinical presentation. World J. Pharm. Med Res., 4:248-253.

Ali A. A. K., Gamal S. E., Anwar R., (2023). Assessment of clinico-epidemiological profile of Hepatocellular carcinoma in the last two decades. Egypt J. Intern. Med., 35: 18. https://doi.org/10.1186/s43162-023-00201-8

Angeli-Pahim I., Chambers A., Duarte S. and Zarrinpar A., (2023). Current Trends in Surgical Management of Hepatocellular Carcinoma. Cancers. 15(22):5378. https://doi.org/10.3390/cancers15225378

Bai J., Tang R., Zhou K., Chang, J., Wang H., Zhang Q., Shi J., and Sun C., (2022). An asparagine metabolism-based classification reveals the metabolic and immune heterogeneity of hepatocellular carcinoma. BMC medical genomics, 15(1): 222. https://doi.org/10.1186/s12920-022-01380-z

Borde T., Nezami N., Laage Gaupp F., Savic L. J., Taddei T., Jaffe A., Strazzabosco M., Lin M., Duran R., Georgiades C., Hong K. and Chapiro J., (2022). Optimization of the BCLC Staging System for Locoregional Therapy for Hepatocellular Carcinoma by Using Quantitative Tumor Burden Imaging Biomarkers at MRI. Radiology, 304(1), 228-237. https://doi.org/10.1148/radiol.212426

Caruso S., O'Brien D. R., Cleary S. P., Roberts L. R. and Zucman-Rossi J., (2021). Genetics of Hepatocellular Carcinoma: Approaches to Explore Molecular Diversity. Hepatology (Baltimore, Md.), 73 Suppl 1, 14- 26. https://doi.org/10.1002/hep.31394

Chen C-F. and Chang H-C., (2023). Time trend and age-specific gender difference in the incidence of liver cancer from 2009 to 2018 in Tai- wan. Adv. Dig. Med 10: 135-142. https://doi.org/10.1002/aid2.13313

Chon Y. E., Jeong S. W. and Jun D. W., (2021). Hepatocellular carcinoma statistics in South Korea. Clin. Mol. Hepatol., 27:512-514.

Deo R. K., Chitalkar P., Malla S., K..C. I., Karki B. and Thapa R., (2021). Epidemiology, Clinico-radiological Profile and Management of Hepatocellular Carcinoma in a Tertiary Care Center in Nepal. Med J. Shree Birendra Hosp, 20(1):6-11. Available- from:https://www.nepjol.info/indexphp/MJSBH/article/view/32256.

Elkenawy I., El-Bendary M., EL-Gilany A. and Shabana W., (2022). Chara teristi s of Hepato ellular Car inoma in Egyptian Patients Single Center Pilot Study . Afro- Egyptian Journal of Infectious and Endemic Diseases, 12(4): 402-409. doi: 10.21608/aeji.2022.169214. 1261.

Fathy Barakat E. M., AbdAlaziz K. M., Mahmoud El Tabbakh M. M. and Alden Ali M. K., (2021). Characteristics of Hepatitis B virus-induced Hepatocellular Carcinoma in Egyptian patients. QJM An Int. J. Med 114(Supplement_1). Available from: https://academic.oup.com/qjmed/article/114/Supplement_1/hcab107.006/6379183

Fedorov K., Maiti A., and Konopleva M., (2023). Targeting FLT3 Mutation in Acute Myeloid Leukemia: Current Strategies and Future Directions. Cancers, 15(8), 2312. https://doi.org/10.3390/cancers15082312

Feng F., and Zhao Y., (2024). Hepatocel- lular Carcinoma: Prevention, Diag- nosis, and Treatment. Medical principles and practice: interna- tional journal of the Kuwait Uni- versity, Health Science Centre, 1- 10. Advance online publication. https://doi.org/10.1159/000539349

Feroz T. and Islam M. K., (2023). A com- putational analysis reveals eight novel high-risk single nucleotide variants of human tumor suppres- sor LHPP gene. Egypt J. Med Hum. Genet., 24, 47. https://doi.org/10.1186/s43042-023-00426-w

Ganeshan D., Szklaruk J., Kaseb A, Kat- tan A. and Elsayes K. M., (2018). Fibrolamellar hepatocellular carci- noma: multiphasic CT features of the primary tumor on pre-therapy CT and pattern of distant metasta- ses. Abdom Radiol, 43(12):3340-8. Available from: http://link.springer.com/10.1007/s00261-018-1657-2

Hiraoka N., Toue S., Okamoto C., Kiku- chi S., Ino Y., Yamazaki-Itoh R., Esaki M., Nara S., Kishi Y., Imaizumi A., Ono N., and Shimada K., (2019). Tissue amino acid profiles are characteristic of tumor type, malignant phenotype, and tumor progression in pancreatic tumors. Scientific reports, 9(1), 9816. https://doi.org/10.1038/s41598-019-46404-4

Jung M. K., Okekunle A. P., Lee J. E., Sung M. K., and Lim Y. J., (2021). Role of Branched-chain Amino Acid Metabolism in Tumor Devel- opment and Progression. Journal of cancer prevention, 26(4): 237-243. https://doi.org/10.15430/JCP.2021.26.4.237

Kaewdech A., Sripongpun P., Assawasu- wannakit S., Wetwittayakhlang P., Jandee S., Chamroonkul N., and Piratvisuth T., (2023). FAIL-T (AFP, AST, tumor size, ALT, and Tumor number): a model to predict intermediate-stage HCC patients who are not good candidates for TACE. Frontiers in medicine 10, 1077842. https://doi.org/10.3389/fmed.2023.1077842

Lai Y. L., Wang K. H., Hsieh H. P., and Yen W. C., (2022). Novel FLT3/AURK multikinase inhibitor is efficacious against sorafenib- refractory and sorafenib-resistant hepatocellular carcinoma. Journal of biomedical science, 29(1), 5. https://doi.org/10.1186/s12929-022-00788-0

Liao J. I., Ho S. Y., Liu P. H., Hsu C. Y., Huang Y. H., Su C. W., Hou M. C. and Huo T. I., (2023). Prognostic Prediction for Patients with Hepa- tocellular Carcinoma and Ascites: Role of Albumin-Bilirubin (ALBI) Grade and Easy (EZ)-ALBI Grade. Cancers (Basel), 15(3):753. doi: 10.3390/cancers15030753.

Liu D., Wen G., Song C., Ji L. and Xia, P., (2022). Amino acid profiles in the tissue and serum of patients with liver cancer. Open Medicine, 17(1): 1797-1802. https://doi.org/10.1515/med-2022-0589

Lopez-Lopez V., Gomez Ruiz A., Lopez- Conesa A., Brusadin R., Cayuela V., Caballero-Illanes A., Torres M. and Robles Campos R., (2020). Effects of primary hypertension treatment in the oncological out- comes of hepatocellular carcinoma. Ann Transl Med 8(14):844. Doi: 10.21037/atm.2020.04.40.

Lyu X., Tsui Y. M., Ho D. W. and Ng I. O., (2022). Liquid Biopsy Using Cell-Free or Circulating Tumor DNA in the Management of Hepa- tocellular Carcinoma. Cellular and molecular gastroenterology and hepatology, 13(6): 1611-1624. https://doi.org/10.1016/j.jcmgh.2022.02.008

Mahmood M. S., Afzal M., Batool H., Saif A., Aqdas T., Ashraf N. M. and Saleem M. 92022). Screening of Pathogenic Missense Single Nucleotide Variants From LHPP Gene Associated With the Hepatocellular Carcinoma: An In silico Approach. Bioinformatics and biology in- sights 16, 11779322221115547. https://doi.org/10.1177/11779322221115547

Mossmann D., Müller C., Park S., Ryback B., Colombi M., Ritter N., Weißenberger D., Dazert E., Coto- Llerena M., Nuciforo S., Blukacz L., Ercan C., Jimenez V., Piscuoglio S., Bosch F., Terracciano L. M., Sauer U., Heim M. H. and Hall M. N., (2023). Arginine reprograms metabolism in liver cancer via RBM39. Cell, 186(23): 5068- 5083.e23. https://doi.org/10.1016/j.cell.2023.09.011

Oh J. H., and Jun D. W., (2023). The latest global burden of liver cancer: A past and present threat. Clinical and molecular hepatology, 29(2): 355-357. https://doi.Org/10.3350/cmh.2023.0070

Okeke E., Davwar P. M., Roberts L., Sartorius K., Spearman W., Malu A. and Duguru M., (2020). Epidemiology of Liver Cancer in Africa: Current and Future Trends. Seminars in liver disease, 40(2): 111- 123. https://doi.org/10.1055/s-0039-3399566

Pinheiro P. S., Jones P. D., Medina, H., Cranford H. M., Koru-Sengul T., Bungum T., Wong R., Kobetz E. N. and McGlynn K. A., (2024). Incidence of Etiology-specific Hepatocellular Carcinoma: Diverging Trends and Significant Heterogene- ity by Race and Ethnicity. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association, 22(3): 562-571.e8. https://doi.org/10.1016/j.cgh.2023.08.016

Plewa S., Horała ., Dereziński P., Klup- czynska A., Nowak-Markwitz E., Matysiak J. and Kokot Z. J., (2017). Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis. International journal of molecular sciences, 18(12): 2727. https://doi.org/10.3390/ijms18122727

Que J., Lin C. H., Lin L. C. and Ho C. H., (2020). Challenges of BCLC stage C hepatocellular carcinoma: Results of a single-institutional experience on stereotactic body radiation therapy. Medicine 99(32), e21561. https://doi.org/10.1097/MD.0000000000021561

Raja A., and Haq F., (2022). Molecular classification of hepatocellular car- cinoma: prognostic importance and clinical applications. Journal of cancer research and clinical oncol- ogy, 148(1): 15-29. https://doi.org/10.1007/s00432-021-03826-w

Ramadan A., EL Ebidy G., Elzaafarany M., Galal A., Ibrahem M. and Ali D., (2021). Characterization of hepatocellular carcinoma in Mansoura University Hospitals: A case-control study of risk factors. Medical Journal of Viral Hepatitis, 6.1(1): 38-45. doi: 10.21608/mjvh.2021.211713.

Safri F., Nguyen R. and Zerehpoosh- nesfchi S., (2024). Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications. Cancer Gene Ther. https://doi.org/10.1038/s41417-024-00764-w

Sarma M., Padma S., Pavithran P., So- masundaram V. H. and Sundaram P. S., (2021). Extrahepatic metasta- ses of hepatocellular carcinoma on 18F FDG PET CT. Journal of the Egyptian National Cancer Institute 33(1), 36. .https://doi.org/10.1186/s43046-021-00086-0

Sayiner M., Golabi P. and Younossi Z. M., (2019). Disease Burden of Hepatocellular Carcinoma: A Global Perspective. Dig. Dis. Sci., 64(4):910-917.

Shen C., Jiang X., Li M., Luo Y. and (2023). Hepatitis Virus and Hepa- tocellular Carcinoma: Recent Advances. Cancers 15(2):533. https://doi.org/10.3390/cancers15020533

Sun W., Li S. C., Xu L., Zhong W., Wang Z. G., Pan C. Z., Li J., Jin G. Z., Ta N., Dong W., Liu D., Liu H., Wang H. Y., Ding J. and (2020). High FLT3 levels may predict sorafenib benefit in hepatocellular carcinoma. Clin. Cancer Res. 26(16):4302- 12.

Sung H., Ferlay J., Siegel R. L., Laver- sanne M., Soerjomataram I., Jemal A. and Bray F., (2021). Global Cancer Statistics 2020: GLO- BOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a Cancer journal for Clinicians, 71(3): 209-249. https://doi.org/10.3322/caac.21660

Takegoshi K., Honda M., Okada H., Takabatake R., Matsuzawa-Nagata N., Campbell J. S., Nishikawa M., Shimakami T., Shirasaki T., Sakai Y., Yamashita T., Takamura T., Tanaka T., and Kaneko S., (2017). Branched-chain amino acids pre- vent hepatic fibrosis and develop- ment of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget, 8(11): 18191-18205. https://doi.org/10.18632/oncotarget.15304

Thokerunga E., Kisembo P. and FangFang H., (2023). Serum Midkine for AFP-negative hepatocellular carcinoma diagnosis: a systematic re- view and meta-analysis. Egypt Liver Journal. 13, 25. https://doi.org/10.1186/s43066-023-00259-7

Wu T., Zheng X., Yang M., Zhao A., Xiang H., Chen T., Jia W. and Ji G., (2022). Serum Amino Acid Profiles Predict the Development of Hepatocellular Carcinoma in Pa- tients with Chronic HBV Infection. ACS omega, 7(18): 15795-15808. .https://doi.org/10.1021/acsomega.2c00885

Yang T. H., Chan C., Yang P. J., Huang Y. H. and Lee M. H., 2023. Genetic Susceptibility to Hepatocellular Carcinoma in Patients with Chron- ic Hepatitis Virus Infection. Virus- es, 15(2): 559. doi:10.3390/v15020559.

Yang Z., Liu J., Xue F., Zhang L., Xue H., Wu Y., Bai S., Du F., Wang X., Deng W., Song C. and Wang, K., (2023). Genomic landscape of Chi- nese patients with hepatocellular carcinoma using next-generation sequencing and its association with the prognosis. Annals of hepatolo- gy, 28(2): 100898. https://doi.org/10.1016/j.aohep.2023.100898

Ye Y., Yu B., Wang H. and Yi F., (2023). Glutamine metabolic reprogram- ming in hepatocellular carcinoma. Frontiers in molecular biosciences, 10: 1242059. https://doi.org/10.3389/fmolb.2023.1242059

Zhang H., Spencer K, Burley S. K. and Zheng X. F. S., (2021). Toward improving androgen receptor-targeted therapies in male- dominant hepatocellular carcino- ma. Drug Discov Today. 26 (6):1539-46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644621000672

Zhao S., Wang M., Yang Z., Tan K., Zheng D., Du, X. and Liu L., (2020). Comparison between Child-Pugh score and Albumin- Bilirubin grade in the prognosis of patients with HCC after liver resec- tion using time-dependent ROC. Annals of translational medicine 8(8): 539. https://doi.org/10.21037/atm.2020.02.85

Downloads

Published

2024-09-18

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>