BIOPSY AS A NONINVASIVE METHOD FOR THE DETECTION OF JAK3 SOMATIC MUTATIONS IN HCC EGYPTIAN PATIENTS BY NGS

Authors

  • AHMED M. ELFEKY Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City
  • A. A. ElSHAARAWY Department of Clinical Pathology, National Liver Institute (NLI), University of Menoufia
  • M. E. EBIED Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City
  • MANAL O. ELHAMSHARY Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City
  • RANDA M. TALAAT Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City
  • M. A. SAKR Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City
  • M. K. KHALIFA Children Cancer Hospital, 57357
  • E. A. AHMED Chemistry Department, Faculty of Science, University of Cairo
  • GHADA M. NASR Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City

Abstract

One of the most prevalent malignancies in the world, hepatocellular carcinoma (HCC), has a high fatality rate. Noninvasive biomarkers are desperately needed to help in HCC screening and early diagnosis. Next-generation sequencing has advanced, and genetic indicators are now the mainstay of cancer detection. Early HCC diagnosis now focuses on genetic indicators such circulating tumour DNA in peripheral blood. JAK3 is a member of the non receptor tyrosine kinase family, the members of which are able to bind to various cell surface receptors and are important in cytokine induced signal transduction. JAK3 mutations were not significantly associated with an increased risk of HCC in the Egyptian population. However, it could have a probable role in the pathogenesis of liver cell failure, HCC development, and prognosis, as the present study identified several novel genes involved in HCC using NGS. A small sample size (21 cases) is considered one of the weak spots of our study. SO, we recommend that this study will be conducted with a larger cohort in the future to completely understand JAK3 genetic alterations and their association with HCC development.

Author Biography

AHMED M. ELFEKY, Department of Molecular Diagnostics and Therapeutics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City

Department of Clinical Pathology, National Liver Institute (NLI), University of Menoufia, Egypt.

References

Adzhubei I., Jordan D. M. and Sunyaev S. R., (2013). Predicting functional effect of human missense mutations using polyphen-2. Current Protocols in Human Genetics, 76(1): 1-7.

Asrani S. K., Devarbhavi H., Eaton J. and Kamath, P. S., (2019). Burden of liver diseases in the world. Journal of Hepatology, 70(1):151-171.

Elliott N. E., Cleveland S. M., Grann V., Janik J., Waldmann T. A. and Davé U. P., (2011). FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood, 118(14): 3911-3921. doi: 10.1182/blood-2010-12-319467

Forbes S. A., Bindal N., Bamford S., Cole C., Kok C. Y., Beare, D. and Futreal, P. A., (2010). Cosmic: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Research, 39(Database).

Hin Tang J. J., Hao Thng D. K., Lim J. J. and Toh T. B., (2020). JAK/STAT signaling in hepatocellular carcinoma. Hepatic Oncology, 7(1): p.HEP18. doi:10.2217/hep-2020-0001

Hu N., Kadota M., Liu H., Abnet C. C., Su H., Wu H. and Lee M. P., (2016). Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer. Cancer Research, 76(7): 1714-1723. doi:10.1158/0008-5472.can-15-0338

Jung K., Fleischhacker M. and Rabien A., (2010). Cell-free DNA in the blood as a solid tumor biomarker-a critical appraisal of the literature. Clin Chim Acta.,411(21-22):1611-1624. doi:10.1016/j.cca.2010.07.032

Kumar P., Henikoff S. and Ng P. C., (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7): 1073-1081.

Li S. D., Ma M., Li H., Waluszko A., Sidorenko T., Schadt E. E. and Ye F., (2017). Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Medicine, 9(1). doi:10.1186/s13073-017-0478-1

LU J., YIN J., Dong R., Yang T., Yuan L., Zang L. and Du X., (2015). Targeted sequencing of cancer associated genes in hepatocellular carcinoma using next genera-tionsequencing. Molecular Medicine Reports, 12(3:.4678-4682. doi:10.3892/mmr.2015.3952

McGirt L. Y., Jia P., Baerenwald D. A., Duszynski R. J., Dahlman K. B., Zic J. A. and Eischen, C. M., (2015). Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood, 126(4):508-519.

Morishita A., Iwama H., Fujihara S., Watanabe M., Fujita K., Tadokoro T. and Masaki, T., (2017). Targeted sequencing of cancer-associated genes in hepatocellular carcinoma using next-generation sequencing. Oncology Letters, 15 (1): 528-532.

Pesu M., Laurence A., Kishore N., Zwillich S. H., Chan G. and O’Shea J. J., (2008). Therapeutic targeting of Janus kinases. Immunological Reviews, 223(1):132-142. doi:10.1111/j.1600-065x.2008.00644.x

Sharafi H. and Alavian S. M., (2019). The rising threat of hepatocellular carcinoma in the Middle East and North Africa region: Results from Global Burden of Disease Study 2017. Clinical Liver Disease, 14(6): 219-223.

Shigeyasu K., Toden S., Zumwalt T. J., Okugawa Y. and Goel A., (2017). Emerging role of MicroRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clinical Cancer Research, 23(10): .2391-2399.

Thierry A. R., Mouliere F., El Messaoudi S., Mollevi C., Lopez-Crapez E., Rolet F. and Ychou, M., (2014). Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nature Medicine, 20(4):.430-435.

Thorvaldsdottir H., Robinson J. T. and Mesirov J. P., (2012). Integrative genomics viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2):.178-192.

Tran N. H., Kisiel J. and Roberts L. R., (2021). Using cell-free DNA for HCC surveillance and prognosis. JHEP Reports, 3(4), p.100304.

Venook A. P., Papandreou C., Furuse J. and Ladr?n de Guevara, L., (2010). The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. The Oncologist, 15(S4): 5-13.

Wong M. C., Huang J. L., George J., Huang J., Leung C., Eslam M. and Ng S. C., (2018). The changing epidemiology of liver diseases in the Asia–pacific region. Nature Reviews Gastroenterology & Hepatology, 16(1): 57-73.

Xiong Y., Xie C. R., Zhang S., Chen J. and Yin Z. Y., (2019). Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma. Cancer Manag Res., 11:5745-5756. doi:10.2147/CMAR.S197455

Yang J. D., Hainaut P., Gores G. J., Amadou A., Plymoth A. and Roberts L. R., (2019). A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology, 16(10): 589-604.

Yang J. D. and Roberts L. R., (2010). Epidemiology and management of hepatocellular carcinoma. Infect Dis Clin North Am; (24), pp.899-919, viii.

Yapali S. and Tozun N., (2018). Epidemiology and viral risk factors for hepatocellular carcinoma in the eastern Mediterranean countries. Hepatoma Research, 4(6): 24.

Yoon S. K., (2018). M olecular mechanism of hepatocellular carcinoma. Hepatoma Research, 4(8): 42.

Downloads

Published

2023-03-23

Most read articles by the same author(s)