SOMATIC MUTATIONS IDENTIFICATION OF FGFR3 AMONG HCC EGYPTIAN PATIENTS USING NGS
Abstract
One of the most prevalent malignancies in the world, hepatocellular carcinoma (HCC), has a high fatality rate. Non-invasive biomarkers are desperately needed to help in HCC screening and early diagnosis. Next-generation sequencing has advanced, and genetic indicators are now the mainstay of cancer detection. Early HCC diagnosis now focuses on genetic indicators such circulating tumour DNA in peripheral blood. Overexpression of the fibroblast growth factor receptor 3 (FGFR3) splice variants FGFR3-IIIb and FGFR3-IIIc was found in ~50% of hepatocellular carcinoma (HCC). FGFR3 gene mutations were not associated with an increased risk of HCC in the Egyptian population. However, it could have a probable role in the pathogenesis of liver cell failure, HCC development, and prognosis, as the present study identified several novel mutations involved in HCC using NGS. The results of the present study provide resources for understanding the molecular alterations underlying the development of HCC. However, further investigations with larger sample sizes are required to fully examine genetic alteration in HCC development.
References
Ahmad I., Iwata T. and Leung H. Y., (2012). Mechanisms of FGFR- mediated carcinogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(4): 850-860.doi:10.1016/j.bbamcr. 2012.01.004.
Alix-Panabieres C. and Pantel K., (2016). Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discovery, 6(5):479-491. doi:10.1158/2159-8290.cd-15-1483
Adzhubei I., Jordan D. M. and Sunyaev S. R., (2013). Predicting functional effect of human missense mutations using polyphen-2. Current Proto-cols in Human Genetics, 76(1): 1-7.
Banini B. A. and Sanyal A. J., (2019). The use of cell free DNA in the diagnosis of HCC. Hepatoma Research, 2019. doi:10.20517/23945079.2019.30
Chang J., Liu X., Wang S., Zhang Z., Wu Z., Zhang X. and Li J., (2014). Prognostic Value of FGFR Gene Amplification in Patients with Different Types of Cancer: A Systematic Review and Meta-Analysis. PLoS ONE, 9(8), p.e105524. doi:10.1371/journal.pone.0105524
Chang Y. G., Bae H. J. and Nam S. W., (2012). Overexpression of FGFR3 mRNA and Mutational Analysis of FGFR3 Gene in Hepatocellular Carcinoma. YAKHAK HOEJI, 56 (6): .352-357.
Crowley E., Di Nicolantonio F., Loupakis F. and Bardelli A., (2013). Liquid biopsy: monitoring cancer-genetics in the blood. Nature Reviews Clinical Oncology, 10(8:472-484. doi: 10.1038/nrclinonc.2013.110
Felden J. V., Craig A. J. and Villanueva A., (2018). Role of circulating tumor DNA to help decision-making in hepatocellular carcinoma. Oncoscience,pp.1. doi:10.18632/ oncoscience.446.
Forner A., Reig M. and Bruix J., (2018). Hepatocellular carcinoma. The Lancet, [online] 391(10127):1301-1314. doi: 10.1016/s0140-6736(18)30010-2
Greulich H. and Pollock P. M., (2011). Targeting mutant fibroblast growth factor receptors in cancer. Trends in Molecular Medicine, 17(5):283-292. doi: 10.1016/j.molmed.2011.01.012
He G., Chen Y., Zhu C., Zhou J., Xie X., Fei, R. and Zhang H., (2019). Application of plasma circulating cell-free DNA detection to the molecular diagnosis of hepatocellular carcinoma. American journal of translational research, 11(3): 1428.
Kumar P., Henikoff S. and Ng P. C., (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols, 4(7): 1073-1081.
Kurniawan D. W., Booijink R., Pater L., Wols I., Vrynas A., Storm G., Prakash J. and Bansal R., (2020). Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. Journal of Controlled Release, 328:640-652. doi: 10.1016/j.jconrel.2020.09.041
Li J., Han X., Yu X., Xu Z., Yang G., Liu B. and Xiu P., (2018). Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Journal of Experimental & Clinical Cancer Research, 37(1). doi: 10.1186/s13046-018-0893-1
Mir I. H., Guha S., Behera J. and Thirunavukkarasu C., (2021). Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biology International, 45(11):2161-2177. doi:10.1002/cbin.11670
Morishita A., Iwama H., Fujihara S., Watanabe M., Fujita K., Tadokoro T. and Masaki, T., (2018). Targeted sequencing of cancer-associated genes in hepatocellular carcinoma using next-generation sequencing. Oncol. Lett. 15 (1): 528-532.
Mouliere F., Chandrananda D., Piskorz A. M., Moore E. K., Morris J., Ahlborn L. B. and Rosenfeld N., (2018). Enhanced detection of circulating tumor DNA by fragment size analysis. Science Translational Medicine, 10(466): p.eaat4921. doi: 10.1126/scitranslmed.aat4921
Ocker M. (2018). Biomarkers for hepatocellular carcinoma: What's new on the horizon? World Journal of Gastroenterology, [online] 24(35): 3974-3979. doi: 10.3748/wjg.v24.i35.3974
Paur J., Nika L., Maier C., Moscu-Gregor A., Kostka J., Huber D. and Grasl-Kraupp B., (2015). Fibroblast growth factor receptor 3 isoforms: Novel therapeutic targets for hepatocellular carcinoma? Hepatology, 62(6):1767-1778. doi: 10.1002/hep.28023
Paur J., Valler M., Sienel R., Taxauer K., Holzmann K., Marian B. and Grasl- Kraupp B., (2020). Interaction of FGF9 with FGFR3-IIIb/IIIc, a putative driver of growth and aggressive behaviour of hepatocellular carcinoma. Liver International, 40(9): 2279-2290. doi: 10.1111/liv.14505
Singh G., Yoshida E. M., Rathi S., Marquez V., Kim P., Erb S. R. and Salh B. S., (2020). Biomarkers for hepato-cellular cancer. World Journal of Hepatology, 12(9): 558-573. doi: 10.4254/wjh.v12.i9.558
Song T., Li L., Wu S., Liu Y., Guo C., Wang W., Dai L., Zhang T., Wu H. and Su B., (2021). Peripheral Blood Genetic Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. Frontiers in Oncology, 11. doi: 10.3389/fonc.2021.583714
Thierry A. R., Mouliere F., El Messaoudi S., Mollevi C., Lopez-Crapez E., Rolet F. and Ychou M., (2014). Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nature Medicine, 20(4):430-435. doi: 10.1038/nm.3511
Torre L. A., Bray F., Siegel R. L., Ferlay J., Lortet-Tieulent J. and Jemal A., (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, [online] 65(2):.87-108. doi: 10.3322/caac.21262
ThorvaldsdĀ“ottir H., Robinson J. T. and Mesirov J. P., (2013). Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14 (2): 178-192.
Tran N. H., Kisiel J. and Roberts L. R., (2021). Using cell-free DNA for HCC surveillance and prognosis. JHEP Reports, [online] 3(4). doi:10.1016/j.jhepr.2021.100304.
Yan X., Shao C., Chen C., Chen J., Gu S., Huang L. and Qiu Y., (2017). Mutation Detection of Fibroblast Growth Factor Receptor 3 for Infiltrative Hepatocellular Carcinoma by Whole-Exome Sequencing. Digestive Diseases and Sciences, 62(2): 407-417. doi: 10.1007/s10620-016-4408-7
Ye Q., Ling S., Zheng S. and Xu X., (2019). Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Molecular Cancer, 18(1). doi: 10.1186/s12943-019-1043-x