CORRELATION BETWEEN CIRCULATING CYTOTOXIC MARKERS (CD3 & CD8) AND DISEASE SEVERITY IN PNEUMONIA COVID-19 PATIENTS

Authors

  • MARWA M. RADWAN 1. Department of Molecular Diagnosis, Genetic Engineering, and Biotechnology Research Institute, University of Sadat City
  • HALA G. METAWALY 2. Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University.
  • M. I. NASR 3. Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City
  • GHADA M. NASR 1. Department of Molecular Diagnosis, Genetic Engineering, and Biotechnology Research Institute, University of Sadat City

Abstract

Among common studies, C- C-reactive protein has been thought to be the most reliable predictor of severity and death in COVID-19 patients. According to the current findings, COVID-19 patients' severity and death were substantially linked with elevated CRP levels. Additionally, prognosis, outcome, and mortality may be predicted using the dynamic assessments of CD3+, CD8+, LDH, ferritin, AST, ALT, and lymphocytes in COVID-19 patients. These inflammatory biomarkers and clinical traits require extensive additional study. Conclusion: CD8+ T cells can be for diagnosing COVID-19 cases. CRP levels rose both at the beginning and during the duration of COVID-19 disease and were associated with mortality and disease severity.

References

Aljabr W., Al-Amari A., Abbas B., Karkashan A., Alamri S., Alnam-nakani M. and Al-Qahtani A., (2022). Evaluation of the Levels of Peripheral CD3+, CD4+, and CD8+ T Cells and IgG and IgM Antibodies in COVID-19 Patients at Different Stages of Infection. Microbiol Spectr.;10(1):e0084521. doi 10.1128/spectrum.00845-21.

Biswas M., Rahaman S., Biswas T. K., Haque Z., Ibrahim B., (2020) Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis [published online ahead of print, 2020 Dec 9]. Intervirology.;1-12. doi:10.1159/000512592.

Cao X., (2020). COVID-19: immuno-pathology and its implications for therapy. Nat Rev Immunol.;20: 269-270.

Chen R., Lan Z., Ye J., Pang L., Liu Y., Wu W., Qin X., Guo Y. and Zhang P. (2021). Cytokine Storm: The Primary Determinant for the Pathophysiological Evolution of COVID-19 Deterioration. Front. Immunol., 12, 589095.

Chi L., Wang S., Wang X., Yang C. and Luo J., (2022). Predictive value of C-reactive protein for disease severity and survival in COVID-19 patients: a systematic review and meta-analysis. Clin Exp Med.;1-8. doi:10.1007/s10238-022-00948-4.

Dong D., Zheng L. and Lin J., (2019). Structural basis of assembly of the human T cell receptor-CD3 complex. Nature.; 573(7775):546-552. doi: 10.1038/s41586-019-1537-0.

Fajnzylber J., Regan J., Coxen K., Corry H., Wong C., Rosenthal A., Worrall D., Giguel F., Piechocka- Trocha A., Atyeo C., et al., (2020). SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun., 11, 5493.

Fialek B., Pruc M., Smereka J., et al., (2022). Diagnostic value of lactate dehydrogenase in COVID-19: A systematic review and meta-analysis. Cardiol J.;29(5):751-758. doi:10.5603/CJ.a2022.0056.

Hadi J. M., Mohammad H. M., Ahmed A. Y., et al. (2022). Investigation of Serum Ferritin for the Prediction of COVID-19 Severity and Mortality: A Cross-Sectional Study. Cureus.; 14(11):e31982. Published 2022 Nov 28. doi:10.7759/cureus.31982.

Henry B. M., Aggarwal G, Wong J., et al. (2020). Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med.;38(9):1722-1726. doi: 10.1016/j.ajem.2020.05.073.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.; 395 (10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Huang Y., Guo L., Chen J., Wu M., Zhang C., Liu Z., Li J., Li K., Xiong Z., Wu Q., Li Z., Luo K., Yuan W., and Wu X. (2021). Serum Lactate Dehydrogenase Level as a Prognostic Factor for COVID-19: A Retrospective Study Based on a Large Sample Size. Front. Med.; 8:671667. doi: 10.3389/fmed.2021.671667.

Huang I and Pranata R., (2020). Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. J intensive care.; 8, 36. https://doi.org/10.1186/s40560-020-00453-4.

Israelow B., Mao T., Klein J., et al. (2021). Adaptive immune determinants of viral clearance and protection in mouse models of SARS- CoV-2. Sci Immunol.;6 (64): eabl4509. doi: 10.1126/sciimmunol.abl4509.

Jin Y. H., Cai L., Cheng Z. S., et al. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019- nCoV) infected pneumonia (standard version). Med J. Chinese People’s Lib Army.; 45(1):4. 10.1186/s40779-020-0233-6).

Kaushal K., Kaur H., Sarma P., Bhattacharyya A., Sharma D. J., Prajapat M., et al. (2022). Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis, and meta-regression analysis. J Crit Care.; 67:172-181. doi: 10.1016/j.jcrc.2021.09.023.

Ketcham S., Bolig T. C., Molling D. J., Sjoding M. W., Flanders S. A. (2021). and Prescott H. C., (2021).Causes and Circumstances of Death among Patients Hospitalized with COVID-19: A Retrospective Cohort Study. Ann. Am. Thorac. Soc., 18, 1076-1079.

Liu Z., Long W., Tu M., et al. (2020). Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect.; 81: 318-356.

SALEH Marwan Mahmood, Abduladheem Turki JALIL, Rafid A. ABDULKAREEM and SULEIMAN A. Abdul-Jabbar., (2020). Evaluation of Immunoglobulins, CD4/CD8 T Lymphocyte Ratio and Interleukin-6 in COVID-19 Patients. Turkish Journal of Immunology.; 8. 129-134.10.25002/tji.2020.1347.

Mei Jiang, Yang Guo, Qing Luo, ZiKun Huang, Rui Zhao, ShuYuan Liu, et al. (2020). T-Cell Subset Counts in Peripheral Blood Can Be Used as Discriminatory Biomarkers for Diagnosis and Severity Prediction of Coronavirus Disease 2019, The Journal of Infectious Diseases.; 222 (2): 198-202, https://doi.org/10.1093/infdis/jiaa252

Montazersaheb S., Hosseiniyan Khatibi S. M., Hejazi, M. S., et al. (2022). COVID-19 infection: an overview on cytokine storm and related interventions. Virol J.; 19, 92. https://doi.org/10.1186/s12985-022-01814-1

Mousavi-Nasab S. D., Mardani R., Nasr Azadani H., Zali F., Ahmadi Vasmehjani A., Sabeti S., Alavi Darazam I. and Ahmadi N., (2020). Neutrophil to lymphocyte ratio and C-reactive protein level as prognostic markers in mild versus severe COVID-19 patients. Gastroenterol. Hepatol. Bed. Bench.;13:361-366.

Padmaprakash Kodavoor Vadiraj, Sandeep Thareja, Nishant Raman, Sowmya C., Karantha and Muthukrishnan Jayaraman., Vasu Vardhan. (2022). Does Raised Transaminases Predict Severity and Mortality in Patients with COVID-19? Journal of Clinical and Experimental Hepatology.; 12, (4): 1114-1123. https://doi.org/10.1016/j.jceh.2022.01.004

Que Y., Hu C., Wan K., et al. (2022). Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol.;41(2):217-230. doi: 10.1080/08830185.2021.1884248.

Statsenko Y., Al Zahmi F., Habuza T., Almansoori T. M., Smetanina D., Simiyu G. L., et al. (2022). Impact of Age and Sex on COVID-19 Severity Assessed from Radiologic and Clinical Findings. Front. Cell. Infect. Microbiol.; 11:777070. doi: 10.3389/fcimb.2021.777070.

Stringer D., Braude P., Myint P. K., Ev- ans L., Collins J. T., Verduri A., Quinn T. J., Vilches-Moraga A., Stechman M. J., Pearce, L., Moug S., McCarthy K., Hewitt J. and Carter B., & COPE (2021). Study Collaborators. The role of C-reactive protein as a prognostic marker in COVID-19. International journal of epidemiology.; 50(2), 420-429. https://doi.org/10.1093/ije/dyab012

Tan C., Huang Y., Shi F., Tan K., Ma Q., Chen Y., Jiang X. and Li X., (2020). C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol.;92:856-862. doi: 10.1002/jmv.25871

Tang J., Xuan C., Lin J., et al. (2020). Clinical significance of detecting c-reactive protein, interleukin-6 and procalcitonin in COVID-19. J Pract Med.;36(7):839-841.

Tirelli C., De Amici M., Albrici C., Mira S., Nalesso G., Re B., Corsico A. G., Mondoni M., Centanni S., (2023). Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. Biology.; 12(2):177. https://doi.org/10.3390/biology12020177

Vardhana S., Baldo L., Morice W. G., and Wherry E. J., (2022). Understanding T-cell responses to COVID-19 is essential for informing public health strategies. Sci Immunol.;7(71):eabo1303. doi:10.1126/sciimmunol.abo1303

Wagner J., DuPont A., Larson S., Cash B., and Farooq, A. (2020). Absolute lymphocyte count is a prognostic marker in Covid-19: A retrospective cohort review. International journal of laboratory hematology.; 42(6), 761-765. https://doi.org/10.1111/ijlh.13288

Wang Y., Shi L, Wang Y. and Yang H.,(2021). An updated meta-analysis of AST and ALT levels and the mortality of COVID-19 patients. Am J Emerg Med.; 40:208-209. doi: 10.1016/j.ajem.2020.05.063.

Wu F., Zhao S., Yu B., Chen Y. M., Wang W., Song Z. G., Hu Y., Tao Z. W., Tian J. H., Pei Y. Y., et al. (20200. A new coronavirus associated with human respiratory disease in China. Nature, 579, 265- 269.

Yang L., Xie X., Tu Z., Fu J., Xu D. and Zhou Y. (2021). The signal pathways and treatment of cytokine storm in COVID-19. Sig. Transd. Targ. Ther.; 6, 255.

Zendehdel A., Jamalimoghadamsiahkal S, Arshadi M., et al. (2022). Survival Analysis of COVID-19 Patients Based on Different Levels of Ddimer and Coagulation Factors. Biomed Environ Sci.; 35(10):957- 961. doi:10.3967/ bes2022.122.

Zhou X. and Ye Q., (2021). Cellular Immune Response to COVID-19 and Potential Immune Modulators. Front Immunol.; 12:646333. doi:10.3389/fimmu.2021.646333

Downloads

Published

2023-10-12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>