IMPROVEMENT OF GENETIC TRANSFORMATION AND PLANT REGENERATION VIA SUSPENSION CULTURES IN Cucurbitaceae FAMILY
Abstract
An improved plant regeneration and Agrobacterium-mediated genetic transformation system was established for squash (Cucurbita pepo L.) and cucumber (Cucumis sativus L.). The effect of 2,4-D and kinetin on callus formation, the effect of liquid and solid MS medium on embryogenic callus proliferation, expression of Gus gene beside its influence by acetosyringone, and regeneration of transformed and non-transformed plant cells were investigated. Cotyledon explants and 2,4-D of 1 mg/L were found to be the best for induction of callus formation giving the highest percentage; 92% and 94% in squash and cucumber, respectively. Transfer of induced callus on liquid MS medium containing 1 mg/L 2,4-D for 4 weeks greatly increased the proliferation of embryogenic callus with an increased percentage of 81.9% and 139.7% in squash and cucumber, respectively. Preculture of embryogenic callus on the liquid MS medium prior to inoculation and cocultivation with Agrobacterium enhanced the genetic transformation efficiency with an increased percentage of 40.6% and 55.7% in the number of blue spots in the absent of acetosyringone in squash and cucumber, respectively, and with an increased percentage of 63.1% and 38.5% in the number of blue spots in the presence of 0.1 mM acetosyringone in squash and cucumber, respectively. Higher percentage of non-transformed regenerates (193.3% and 172.7%) and transformed regenerates (107.1% and 86.4%) were obtained from the embryogenic calli, which were previously cultured on the liquid MS medium in squash and cucumber, respectively. Molecular evidence of transgenic plants was confirmed by polymerase chain reaction (PCR) analysis and demonstrated the effectiveness of the transformation procedure.References
Akasaka-Kennedy, Y. Tomita, K. O. and H. Ezura (2004). Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci., 166: 763-769
Akashi, K., K. Morikawa and A. Yokota (2005). Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnol., 22: 13-18
Ananthakrishnan, G., X. Xia, C. Elman, S. Singer, H. S. Paris, A. Gal-On and V. Gaba (2003). Shoot production in squash (Cucurbita pepo) by in vitro organogenesis. Plant Cell Rep., 21: 739-746
Bergervoet, J. H. W., F. van der Mark, and J. B. M. Custers (1989). Organogenesis versus embryogenesis from long-term suspension cultures of cucumber (Cucumis sativus L.). Plant Cell Rep., 8: 116-119
Cade, R. M., T. C. Wehner and F. A. Blazich (1990). Somatic embryos derived from cotyledons of cucumber. J. Amer. Soc. Hort. Sci., 115: 691-696.
Chee, P. P. and D. M. Tricoli (1988). Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L. Plant Cell Rpt., 7: 274-277.
Choi, P. S., W. Y. Soh, Y. S. Kim, O. J. Yoo and J. R. Liu (1994). Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep., 13: 344-348.
Debeaujon, I. and M. Branchard (1993). Somatic embryogenesis in Cucurbitaceae. Plant Cell Tiss. & Organ Cult., 34: 91-100.
Edwards, K., C. Johnstone and C. Thompson (1991). A simple and rapid methods for the preparation of plant genomic DNA for PCR analysis. Nucleic Acid Res., 19: 1349
El-Absawy, E. A., Y. A. Khidr, A. Mahmoud, M. E. Hasan and A. A. Hemeida (2012). Somatic embryogenesis and plant regeneration induced from mature seeds, cotyledons and shoot tips of cucumber. J. Product. & Dev., 17: 193-209.
Han, J. S., C. K. Kim, S. H. Park, K. D. Hirschi and I. Mok (2005). Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.). Plant Cell Rep., 23: 692-698.
He, Z., Z. Duan, W. Liang, F. Chen, W. Yao, H. Liang, C. Yue, Z. Sun and J. Dai (2006). Mannose selection system used for cucumber transformation. Plant Cell Rep., 25: 953-958.
Ibrahim, I. A., A. A. Nower, A. M. Badr El-Den and T. M. Abd-Elaziem (2009). High efficiency plant regeneration and transformation of watermelon (Citrulus lanatus cv. Giza1). Res. J. Agric. & Biol. Sci., 5: 689-697.
Jefferson, R. A. (1987). Assaying chimeric genes in plants: the Gus gene fusion system. Plant Molecular Biology, 5: 387-405.
Jeffrey, C. (1962). Notes on Curcubitaceae, including a proposed new classification of the family. KewBulletin, 15: 337-371.
Jelaska, S. (1972). Embryoid formation by fragments of cotyledons and hypocotyls in Cucurbita pepo. Planta, 103: 278-280.
Kageyama, K., K. Yabe and S. Miyajima (1991). Somatic embryogenesis in suspension culture of mature seed of Cucumis melo L. Japan. J. Breed., 41: 273-278.
Kathiravan, K., G. Vengedesan, S. Singer, B. Steinitz, H. S. Paris and V. Gaba (2006). Adventitious regeneration in vitro occurs across a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell Tiss. & Org., 85: 285-295.
Khidr, Y. A., A. Mahmoud, E. ElAbsawy, A. A. Hemeida and M. E. Hasan (2012). Production of Transgenic Cucumber Plantlets containing Sequences from Watermelon Mosaic Virus-II fused with Gfp gene. Egypt. J. Genet. and Cytol. In press.
Lee, Y. K., W. I. Chung and H. Ezura (2003). Efficient plant regeneration via organogenesis in winter squash (Cucurbita maxima Duch.). Plant Science, 164: 413-418.
Levin, R., V. Gaba, B. Tal, S. Hirsch and D. De Nola (1989). Automated plant tissue culture for mass propagation. Biotechnology, 6: 1035-1040.
Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15: 473-497.
Noel, M., D. Comeau and P. Lenee (1992). Embryogenese somatique de la courgette (Cucurbita pepo L.) a partir de cotyledons. In: Comptes-rendus du ler forum jeunes chercheurs de l’IAPTC-Du gene a l’entreprise’. Amiens, France, p. 14-18.
Nhut, D. T., N. T. M. Hanh, P. Q. Tuan, L. T. M. Nguyet, N. T. H. Tram, N. C. Chinh, N. H Nguyen and D. N. Vinh (2006). Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum. Scientia Horticulturae, 110: 93-7.
Pal, S. P., I. Alam, M. Anisuzzaman, K. K. Sarker, S. A. Sharmin and M. F. Alam (2007). Indirect organogenesis in summer squash (Cucurbita pepo L.). Turk. J. Agric., 31: 63-70.
Rahaman, A. S. H. (2003). Bottle gourd (Langenaria siceraria) a vegetable for good health. Natural Product Reliance, 2: 249-250.
Raharjo, S. J. T. and Z. K. Punja (1992). Initiation, maintenance and plantlet regeneration from long-term suspension cultures of pickling cucumber. Cucurbit Genetics Cooperative Report, 15: 35-39.
Ribas, A. F., E. Dechamp, A. Champion, B. Bertrand, M. C. Combes, J. L. Verdeil, F. Lapeyre, P. Lashermes and H. Etienne (2011). Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biology, 11: 92.
Saharan, V. R. C., N. R. Yadav and K. Ram (2004). Studies on improved Agrobacterium-mediated transformation in two indica rice (Oryza sativa L.). Afr. J. Biotechnol., 3: 572-575
Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring harbor, New York.
Shah, P., N. K. Singh, N. Khare, M. Rathore, S. Anandhan, M. Arif, R. K. Singh, S. C. Das, Z. Ahmed and N. Kumar (2008). Agrobacterium-mediated genetic transformation of summer squash (Cucurbita pepo L. cv. Australian green) with cbf-1 using a two vector system. Plant Cell Tiss. & Org., 95: 363-371
Shrawat, A. K., D. Becker and H. Lorz (2007). Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sec., 172: 281-290.
Sikdar, B., M. Bhattacharya, A. Mukher-jee, A. Banerjee, E. Gosh, B. Ghosh and S. C. Roy (2010). Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR marker. Biologia Plantarum, 54: 135-140.
Sultana, R. S., M. A. Bari, M. H. Rahman, M. M. Rahman, N. A. Siddique and N. Khawn (2004). In vito rapid regeneration of plantlets from leaf explants of watermelon (Citrullus lanatus, Thumb.). Biotechnology, 3: 131-135.
Suratman, F., F. Huyop, A. Wagiran, Z. Rahmat, H. Ghazali and G. K. A. Parveez (2010). Cotyledon with hypocotyl segment as an explant for the production of transgenic Citrullus vulgaris Schrad (Watermelon) mediated by Agrobacterium tumefacienss. Biotechnol., 9: 106-118.
Tabei, Y., T. Kanno and T. Nishio (1991). Regulation of organogenesis and somatic embryogenesis by auxin in melon, Cucumis melo L. Plant Cell. Rep., 10: 225-229.
Tabei, Y., S. Kitade, Y. Nishizawa, N. Kikuchi, T. Kayano, T. Hibi and K. Akutsu (1998). Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep., 17: 159-164.
Tricoli, D. M., K. J. Carney, P. F. Russell, J. R. Mcmaster, D. W. Groff, K. C. Hadden, P. T. Himmel, J. P. Hubbard, M. L. Boeshore and H. D. Quemada (1995). Field-evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus. Bio/Technol., 13: 1458-1465.
Usman, M., Z. Hussain and B. Fatima (2011). Somatic embryogenesis and shoot regeneration induced in cucumber leaves. Pak. J. Bot., 43: 1283-1293.
Valdez-Melara1, M., A. García, M. Delgado, A. M. Gatica-Arias and P. Ramírez-Fonseca (2009). In vitro plant regeneration system for tropical butternut squash genotypes (Cucurbita moschata). Rev. Biol. Trop. (Int. J. Trop. Biol., 57: 119-127.
Van, K., H. J. Jang, Y. E. Jang and S. H. Lee (2008). Regeneration of plants from EMS-treated immature embryo cultures in soybean (Glycine max, L. Merr.). J. Crop Sci. Biotech., 11: 119-126
Vasudevan, A., N. Selvaraj, A. Ganapathi and C. W. Choi (2007). Agrobacterium-mediated genetic transformation in cucumber (Cucumis
sativus L.). Am. J. Biotechnol. Biochem., 3: 24-32.
Wei, T. (2001). Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.). Cell Research, 11: 237-243.
Wenck, A. R., M. Quinn, R. W. Whetten, G. Pullman and R. Sederoff (1999). High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Molecular Biology, 39: 407-416.
Zhang, Y. F., J. H. Zhou, T. Wu and J. S. Cao (2008). Shoot regeneration and the relationship between organogenic capacity and endogenous hormonal contents in pumpkin. Plant Cell Tiss. & Org., 93: 323-331.