MEIOTIC BEHAVIOR OF INTERSPECIFIC HYBRIDS BETWEEN HEXAPLOID AND TETRAPLOID WHEAT SPECIES

Authors

  • A. A. ALI Genetics Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh
  • OLA A. GALAL Genetics Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh
  • S. M. HAMMAD Wheat Research section, Agricultural Research Station, Sakha, Kafr El-Sheikh
  • LAMIAA GAMEIL Genetics Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh

Abstract

Cytogenetic behavior of five wheat genotypes of Triticum aestivum (Shandweel 1, Misr 2 and Gemmiza 11) and T. durum (Benisouef 5 and Benisouef 6) in addition to their interspecific hybrids was studied. All five parental genotypes showed normal behavior in meiosis. Also, the interspecific hexaploid × hexaploid showed normal diploid pairing at diakinesis and metaphase I with average number ranged from 18.16 (C2) to 20.49 (RC2) and from 16.77 (C2) to 20.22 (C1) bivalents, respectively. And tetraploid × tetraploid showed normal diploid pairing at diakinesis and the average of bivalents were 13.95 and 13.98 for C10 and RC10 hybrids at metaphase I, respectively. So the normal decrease of laggards and micronuclei averages was recorded. Higher incidences of aberrant chromosomal structure such as the formation of univalent, laggards and micronuclei were observed in all the six interspecific pentaploid (hexaploid × tetraploid) which could be described as an abnormal compared to the six reciprocals hybrids (tetraploid × hexaploid) which were highly unexpected normality to form normal bivalents and a low frequency of laggards and micronuclei. Pollen grains of hexaploid × tetraploid hybrids were found to have markedly lower values of viability; ranged from 0.50 to 0.72, compared to parents and the other interspecific hybrids. Thus, the present study succeeded in proving that interspecific hybridization produced fertile pentaploid hybrids.

References

Akhunov E. D., Goodyear A. W., Geng S., and Qi L. (2003). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research, 75313: 753-763.

Badaeava E. D, Dedkova O. S., Gay G., Pukhalskyi V. A., Zelenin A. V., Bernard S. and Bernard M. (2007). Chromosomal rearrangement in wheat: their types and distribution. Genome, 50: 907-926.

Bhagyalakshmi K., Vinod K., Kumar M., Arumugachamy S., Prabhakaran A. J. and Raveendran T. S. (2008). Interspecific hybrids from wild x cultivated Triticum crosses - A study on the cytological behaviour and molecular relations. J. Crop Sci. Biotech., 11: 257-262.

Colas I, Shaw P., Prieto P., Wanous M., Spielmeyer W., Mago R. and Moore G. (2008). Effective chromosome pairing requires chromatin remodelling at the onset of meiosis. Proc. Natl. Acad. Sci., USA, 105: 6075-6080.

Ellstrand N. C., Prentice H. C. and Hancock J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol Syst., 30: 539-563.

Eckardt, N. A. (2009). Grass genome evolution. Plant Cell, 20: 3-4.

El-Baghdady N. A. (2002). Cytogenetical and biochemical studies on some Brassica species and their F1 hybrids. M.Sc. thesis, Genetics Department, Faculty of Agriculture, Tanta University, Egypt.

Gameil L. (2010). Genetic and cytogenetic analysis of wheat genome evolution. M.Sc. thesis, Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Egypt.

Gupta P. K., Kulwal P. L. and Rustgi S. (2005). Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet. Genome Res., 109: 315-327.

Gupta P. K., Mir R. R., Mohan A. and Kumar J. (2008). Wheat genomics: Present status and future prospects. International J. Plant Genomics, 1-36.

Khalaf R. M. E. (2000). Genetic and cytogenetic studies on wheat. Ph.D. thesis, Faculty of Agriculture, Zagazeg University, Egypt.

Lima-Brito J., Carvalho A., Martin A., Helsop-Harrison J. S. and Guedes-Pinto H. (2006). Morphological, yield, cytological and molecular characterization of bread wheat × tritordeum F1 hybrid. Journal of Genetics, 85: 124-131.

Lukjanenko P. P. (1934). A new method of artificial pollination of wheat. Semenovdstvo (seed growing) 4: 6-7 plant Breed. Abst., 5: 325

Martınez-Perez. E, Shaw P., Reader S., Arago´n-Alcaide L., Miller T. E. and G. Moore (1999). Homologous chromosome pairing in wheat. J. Cell Sci 112: 1761Y1769.

Martinez-Perez. E., Shaw P. and Moore G. (2001). The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature, 411: 204-207.

Martinez-Perez. E., Shaw P. and Moore G. (2003). Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. The Plant Journal, doi: 10.1046/j.1365-313x.2003.01853

Maestra B., J. de Jong H., Shepherd K. and Naranjo T. (2002). Chromosome arrangement and behaviour of two rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Ph1 locus. Chromosome Res., 10: 655-667.

Moreira K. and Curgel T. (1941). Pollen fertility and its correlation wit number of seeds in species and from genus Citrus. Borgantia, san Paulo, 1: 669-711.

Nasser M. A. M. (1976). Cytogenetic studies on wheat. M.Sc. thesis, Genetics Department, Faculty of Agriculture, Alexandria University, Egypt.

Naranjo T. and Lacadena J. R. (1980). Interaction between wheat chromosomes and rye telomeric heterochromatin. Chromosoma (Berl.), 81: 249-261.

Paterson A. H., J. Bowers E., Burowa M. D., Draye X., Elsike C. G., Jiang C., Katsar C. S., Lan T., LIN Y., Ming R. and Wright R. J. (2000). Comparative genomics of plant chromosomes. Plant Cell, 12: 1523-1540.

Paux E, Roger D., Badaeva E., Gay G., Bernard M., Sourdille P. and Feuillet C. (2006). Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. The Plant Journal, 48: 463-474.

Pissareva A. V. (1935). The technique of crossing wheat. Bull. Appl. Bot., Leningrad, Ser. (A), 14: 47-35.

Qi L. L., Echalier B., Chao S., Lazo G. R., Butler G. E., Anderson O. D., Akhunov E. D., J. Dvorˇa´k, A. M. Linkiewicz, A. Ratnasiri, Dubcovsky J., Bermudez-Kandianis C. E., R. A. Greene, Kantety R., Rota C. M. La, Munkvold J. D., Sorrells S. F., Sorrells M. E. and Dilbirligi M., Sidhu D., Erayman M., Randhawa H. S., Sandhu D., Bondareva S. N., Gill K. S., Mahmoud A. A., Ma Miftahudin X.-F., Gustafson J. P., Conley E. J., Nduati V., Gonzalez Hernandez- J. L., Anderson J. A., J. H. Peng, N. L. V. Lapitan, Hossain K. G., Kalavacharla V., Kianian S. F., Pathan M. S., Zhang D. S., Nguyen H. T., D.-W. Choi, R. D. Fenton, Close T. J., McGuire P. E., Qualset C. O. and Gill B. S. (2004). Chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 168: 701-712.

Riley R. (1974). Cytogenetics of chromosome pairing in wheat. Genetics, 78: 193-203.

Sˇafa´r J., Bartˇos J., Janda J., Bellec A., Kubala´kova M. ´ et al., (2004). Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant. J., 39: 960-968.

Salseb C. J., Sabotc F., Rahmand S., Bellecb A., Laubinc B., Duboise I., Dossate C., Sourdille P., Joudrier P., M. Gautier F., Cattolico L., Beckert M., Aubourg S., Weissenbach J., Caboche M., Bernard M., Leroy P. H. and Chalhoub B. (2005). Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and aegilops). The Plant Cell, 17: 1033-1045.

Salse J., Bolot S., Throude M., Jouffe V., Piegu B., Quraishi U. M., Calcagno T., Cooke R., Delseny M. and Feuillet C. (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell, 20: 11-24.

Sandhu D. and Gill K. S. (2002). Genecontaining regions of wheat and the other grass genomes. Plant Physiol., 128: 803-811.

Schwarzacher T. (1997). Three stages of meiotic homologous chromosome pairing in wheat: Cognition, alignment and synapsis. Sex Plant Report, 10: 324-331.

Suemoto H. (1973). The origin of the cytoplasm of tetraploid wheat. Proc. 4th Int. Wheat Genetics Symp., Columbia, Missouri, p. 109-113.

Su Y., Zhang D., Li Y., and Li S. (2016). Nonhomologous chromosome pairing in aegilopssecale hybrids. Cytogenet. Genome Res., 147: 268-273.

Takumi S., Nishioka E., Morihiro H., Kawahara T. and Matsuoka Y. (2009). Natural variation of morphological traits in wild wheat progenitor Aegilops tauschii Coss. Breeding Science, 59: 579-588.

Tsujimoto H., Yamada T. and Sasakuma T. (1997). Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc. Natl. Acad. Sci. USA, 94: 3140-3144.

Vedel F. and Delseny M. (1987). Repetitivity and variability of higher plant genomes. Plant Physiol. Biochem., 25: 191-210.

Zamir D. (2001). Improving plant breeding with exotic genetic libraries. Nat Rev Genet., 2: 983-989.

Downloads

Published

2020-08-30

Issue

Section

Articles