GENETICAL EFFECTS OF USING SILICA NANOPARTICLES AS BIOPESTICIDE ON Drosophila melanogaster
Abstract
Employing nanomaterials and nanoparticles in the industrial and research area could reduce use of certain agrochemicals such as pesticides, and further provide a better ability to control the application and dosage of active substance to the target. Here, the use of silica nanoparticles (SiNPs) as biopesticide was applied in attempt to bring a number of benefits into potential applications of nanotechnology to pesticides; in addition, to provide a review to explain in vivo biological effects using Drosophila melanogaster fruit fly. In this study, SiNPs were used in the form of nanometer silicon dioxide (10-20 nm SiO2). The effects of exposure to SiNPs (100, 250, 500 and 1000 ppm) on larval deform, larva-to-adult viability, body size, chromosomal rearrangements, protein and isozymes expression as well as DNA content were evaluated in Drosophila flies by using morphological, cytological and biochemical analysis.
All SiNPs concentrations had no toxic effect on larva-to-adult viability or body size of D. melanogaster, although the ingested SiNPs concentrations showed significantly deformation in mouth and body parts and became incorporated into organs of D. melanogaster larvae in a dose-dependent manner; compared with control. This suggests that SiNPs ingested by these insects have negligible physiological impact. On the other hand, we cannot exclude other genotoxic effects. SiNPs at the concentrations of 500 and 1000 ppm appeared to be more affective on salivary gland chromosomes than the other two concentrations. SiNPs induced specific changes in the number and intensity of total protein as well as the activity of esterase and peroxidase isozymes. Moreover, SiNPs significanty reduced DNA content in dose dependent manner. These toxic effects were closely related to the concentration used.
From all the above mentioned results, the level of SiNPs could now be determined to be introduced to control the insects based on the physiological level, in addition to maintain and protect other organisms at the genetically level of these nanoparticles.
References
Akhtar, M. J., M. Ahamed, S. Kumar, H. Siddiqui, G. Patil, M. Ashquin and I. Ahmad (2010). Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology, 276: 95-102.
Barnes, C. A., A. Elsaesser, J. Arkusz, A. Smok, J. Palus, A. Lesniak, A. Salvati, J. P. Hanrahan, W. H. Jong, E. Dziubałtowska, M. Stepnik, K. Rydzyński, G. McKerr, I. Lynch, K. A. Dawson and C. V.
Howard (2008). Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett., 8: 3069-3074.
Blickley, T. M. and P. McClellan-Green (2008). Toxicity of aqueous fullerene in adult and larval fundulus heteroclitus. Environ. Toxicol. Chem., 27: 1964-1971.
Brunner, T. J., P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink and W. J. Stark (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol., 40: 4374-4381.
Chen, M. and M. A. Von (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp. Cell Res., 305: 51-62.
Cho, W. S., M. Choi, B. S. Han, M. Cho, J. Oh, K. Park, S. J. Kim, S. H. Kim and J. Jeong (2007). Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol. Lett., 175: 24-33.
Cummings, A. and R. Kavlock (2005). A systems biology approach to developmental toxicology. Reprod. Toxicol., 19: 281-290.
Dobzhansky, T. H. (1947). A response of certain gene arrangements in the third chromosome of Drosophila pseudoobscura to natural selection. Genetics, 32: 142-160.
El-Fadly, G., S. Sidaros and A. A. Dif (1990). Effect of bovistin on gene expression and yield components of faba bean (Vicia faba) infected with broad bean strain virus. Proc. 3rd Conf. Agric. Dev. Res., Fac. Agric., Ain Shams Univ., Cairo, Egypt.
El-Samahy, M. F. M. (2002). Studies rice stem borer, Chilo agamemnon Bles. MSc. Thesis, Fac. Agric. Kafr El-Sheikh, Tanta Univ., Egypt.
EPA (2011). Environmental Protection Agency "Regulating Pesticides that Use Nanotechnology". Quick resources: Press Release-June 9, 2011; Federal Register Notice-June 17, 2011; Comment Period Extended to August 17, 2011.
Firling, C. E. (1977). Amino acids and protein changes in the haemolymph of developing fourth instar Chironomus lentans. J. Insect Physiol., 23: 17-22.
Gerloff, K., C. Albrecht, A. W. Boots, I. Forster and R. P. F. Schins (2009). Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 3: 355-364.
Geiser, M., B. Rothen-Rutishauser, N. Kapp, S. Schurch, W. Kreyling, H. Schulz, M. Semmler, V. I. Hof, J. Heyder and P. Gehr (2005). Ul-trafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect., 113: 1555-1560.
Gonzalez, L., L. C. J. Thomassen, G. Plas, V. Rabolli, D. Napierska, I. Decordier, M. Roelants, P. H. Hoet, C. E. A. Kirschhock, J. A. Martens, D. Lison and M. Kirsch-Volders (2010). Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology, 4: 382-395.
Jin, Y., S. Kannan, M. Wu and J. X. Zhao (2007). Toxicity of luminescent silica nanoparticles to living cells. Chem. Res. Toxicol., 20: 1126-1133.
Laayouni, H., M. Santos and A. Fontdevila (2000). Toward a physical map of Drosophila buzzatii: use of randomly amplified polymorphic DNA polymorphisms and sequence-tagged site landmarks. Genetics, 156: 1797-1816.
Laemmli, U. K. (1970). Clavage of structural protein during assembly of head bacteriophage T4. Nature, 227: 680-685.
Leeuw, T. K., R. M. Reith, R. A. Simonette, M. E. Harden, P. Cherukuri, D. A. Tsyboulski, K. M. Beckingham and R. B. Weisman (2007). Single-walled carbon nanotubes in the intact organism: Near-IR imaging and biocompatibility studies in Drosophila. Nano Lett., 7: 2650-2654.
Li, Z. Z., S. A. Xu, L. X. Wen, F. Liu, A. Q. Liu, Q. Wang, H. Y. Sun, W. Yu and J. F. Chen (2006). Controlled release of avermectin from porous hollow silica nano-particles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Journal of Controlled Release, 111: 81-88.
Lin, W., Y. W. Huang, X. D. Zhou and Y. Ma (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol., 217: 252-259.
Lindsley, D. L. and E. H. Grell (1967). Genetics variations of Drosophila melanogaster. Publs Carnegie Instn, 627.
Liu, Y., P. Laks and P. Heiden (2002a). Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci., 86: 596-607.
Liu, Y., P. Laks and P. Heiden (2002b). Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J. Appl. Polym. Sci., 86: 608-614.
Liu, Y., P. Laks and P. Heiden (2002c). Controlled release of biocides in solid wood. III. Preparation and characterization of surfactantfree nanoparticles. J. Appl. Polym. Sci., 86: 615-621.
Liu, F., L. X. Wen, Z. Z. Li, W. Yu, H. Y. Sun and J. F. Chen (2006). Porous hollow silica nano-particles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41: 2268-2275.
Liu, L., T. Takenaka, A. A. Zinchenko, N. Chen, S. Inagaki, H. Asada, T. Kishida, O. Mazda, S. Murata and K. Yoshikawa (2007). Cationic silica nanoparticles are efficiently transferred into mammalian cells. Int. Symp. Micro-Nano Mechatronics Hum. Sci., 1-2: 281-285.
Martin, K. R. (2007). The chemistry of silica and its potential health benefits. J. Nutr. Health Aging, 11: 94-97.
Mogul, M. G., H. Akin, N. Hasirci, D. J. Trantolo, J. D. Gresser and D. L. Wise (1996). Controlled release of biologically active agents for purposes of agricultural crop management. Resources Conservation and Recycling, 16: 289-320.
NanoPool, http://www.nanopool.eu/ english/news.htm. NTP (2009). National Toxicology Program " Chemical Information Review Document for Silica Flour (Micronized α-Quartz) [CAS No. 14808-60-7]. http://ntp.niehs.nih.gov/
Park, E. J. and K. Park (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett., 184: 18-25.
Petersen, E. J., Q. G. Huang and W. J. Weber (2008). Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health Perspect., 116: 496-500.
Prevosti, A. (1955). Geographical variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harbor Symp. Quant. Biol., 20: 294-298.
Scandalios, J. G. (1964). Tissue-specific isozyme variations in maize. J. of Heredity, 55: 281-285.
Sarih, M., V. Souvannavong, S. C. Brown and A. Adam (1993). Silica induces apoptosis in macrophages and the release of interleukin-1 alpha and interleukin-1 beta. Journal of Leukocyte Biology, 54: 407-413.
Seth, D., N. Debnath, A. Rahman, S. Mukhopadhyaya, I. Mewis, C. Ulrichs, R. L. Bramhachary and A. Goswami (2007). Control of poultry chicken malaria by surface functionalized amorphous nanosilica. Biomolecules (q-bio.BM); Molecular Networks (q-bio.MN) Cite as: arXiv:0707.2446v1 [q-bio.BM].
Singh, S., U. M. Bhatta, P. V. Satyam, A. Dhawan, M. Sastry and B. L. V. Prasad (2008). Bacterial synthesis of Si/SiO2 nanocomposites. J. Mater. Chem., 18: 2601-2606.
Taylor, N. J. and C. M. Fauquet (2002). Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol., 21: 963-977.
Taylor, U., S. Klein, S. Petersen, W. Kues, S. Barcikowski and D. Rath (2010). Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry, 77: 439-446.
Torney, F., B. G. Trewyn, V. S. Y. Lin and K. Wang (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotech., 2: 295-300.
Valko, M., C. J. Rhodes, J. Moncol, M. Izakovic and M. Mazur (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160: 1-40.
Vallet-Regí, M. and F. Balas (2008). Silica Materials for Medical Applications. Biomed. Eng. J., 2: 1-9.
Velzeboer, I., A. J. Hendriks, A. M. J. Ragas and D. Van de Meent (2008). Aquatic ecotoxicity tests of some nanomaterials. Environ. Toxicol. Chem., 27: 1942-1947.
Wang, F., F. Gao, M. Lan, H. Yuan, Y. Huang and J. Liu (2009). Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicology In Vitro, 23: 808-815.
Wang, J. J., B. J. S. Sanderson and H. E. Wang (2007). Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ. Mol. Mutagen, 48: 151-157.
Wright, S. and T. H. Dobzhansky (1946). Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics, 31: 125-156.
Yang, X., J. Liu, H. He, L. Zhou, C. Gong, X. Wang, L. Yang, J. Yuan, H. Hung, L. He, B. Zhang and Z. Zhuang (2010). SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Particle and Fibre Toxicology, 7: 1.