MOLECULAR CHARACTERIZATION OF DROUGHT TOLER-ANCE IN NINE EGYPTIAN RICE GENOTYPES USING RAPD, SCoT AND SSR MARKERS
Abstract
Nine Egyptian rice (Oryza sativa L.) genotypes were assessed for DNA polymorphism using three different types of molecular markers (RAPD, SCoT and SSR). RAPD primers produced 68.70% of polymorphism and an average PIC value of 0.24. SCoT primers generated 86.54% of polymorphism and 0.28 average value of PIC. All tested SSR markers yielded amplified products and generated 104 alleles (average 6.5 alleles/marker) with PIC values ranged from 0.20 to 0.49 per marker. RM301 SSR marker produced specific alleles only in the four drought sensitive rice varieties that could readily distinguished the sensitive genotypes from the others. While, RM20A and RM302 SSR markers produced one positive unique marker in the moderate (Sakha
102) and drought tolerant (Giza 178) varieties, respectively. These markers may be usefully exploited for molecular breeding of rice for drought tolerance. On the other hand, clustering analysis using UPGMA method classified the nine rice genotypes into three groups using RAPD and SCoT markers and four groups using SSR marker. The results of principal coordinate analysis (PCoA) were closely related with those of the clustering analysis. These results could be used by breeders to develop drought tolerant rice genotypes and new breeding protocols for rice improvement.
References
Abdel-Tawab, F. M., E. M. Fahmy, A. Bahieldin, A. A. Mahmoud, H. T. Mahfouz, H. F. Eissa and O. Moseilly (2003). Marker-assisted selection for drought tolerance in Egyptian bread wheat (Triticum aestivum L.). Egypt. J. Genet. Cy-tol., 32: 43-63.
Aboulila, A. A. and M. Mansour (2017). Efficiency of triple-SCoT primer in characterization of genetic diversi- ty and genotype-specific markers against SSR fingerprint in some Egyptian barley genotypes. Am. J. Mol. Biol., 7: 123-137.
Akkaya, M. S. and E. B. Buyukunal-Bal (2004). Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica, 135: 179-185.
Atkinson, N. J. and P. E. Urwin (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot., 63: 3523-3543.
Bahraminejad, A. and G. Mohammadi- Nejad (2015). Genetic diversity analysis of date palm (Phoenix dactylifera L.) genotypes using RAPD markers. Annu. Res. Rev. Biol., 5: 41-47.
Bimpong, I. K., R. Serraj, J. H. Chin, J. Ramos, E. Mendoza, J. Hernandez, M. S. Mendioro and D. S. Brar (2011). Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64) × O. glaberrima under lowland moisture stress. J. Plant. Biol., 54: 237-250.
Boopathi, N. M., R. C. Babu, P. Chezian, P. Shanmu-gasundaram, P. Nagarajan and S. Sadasivam (2001). A preliminary study on the identification of molecular marker associated with drought response in rice. Trop. Agric. Res., 13: 364- 372.
Cho, Y. G., T. Ishii, S. Temnykh, X. Chen, L. Lipovich, S. R. McCouch, W. D. Park, N. Ayres and S. Cartinhour (2000). Diversity of mi-crosatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet., 100: 713-722.
Collard, B. C. and D. J. Mackill (2009). Start codon targeted (SCoT) polymorphism: A simple novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Report, 27: 86-93.
Dora, S. A., M. Mansour, A. A. Aboulila and E. Abdelwahab (2017). Genetic diversity and relationships among some barley genotypes for net blotch disease resistance using RAPD, SCoT and SSR markers. Egypt. J. Genet. Cytol., 46: 139-165.
Farooq, M., N. Kobayashi, A. Wahid, O. Ito and S. M. A. Basra (2009). Strategies for producing more rice with less water. Adv. Agron., 101: 351-388.
Jain, S., R. Jain and S. McCouch (2004). Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluores- cently-labeled microsatellite markers. Theor. Appl. Genet., 109: 965-977.
Kamoshita, A., R. C. Babu, N. M. Boopathi and S. Fukai (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res., 109: 1-23.
Malik, T. A., A. Price and D. Wright (2000). Bulked segregant analysis and RAPD markers for drought resistance in wheat. Pak. J. Agric. Res., 16: 1-5.
Morgante, M. and A. Olivieri (1993). PCR-amplified microsatellites as markers in plant genetics. Plant J., 3: 175-182.
Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res., 8: 4321-4325.
Nazari, N. and H. Pakniyat (2008). Genetic diversity of wild and cultivated barley genotypes under drought stress using RAPD markers. Bio- technology, 7: 745-750.
Pakniyat, H. and E. Tavakol (2007). RAPD markers associated with drought tolerance in bread wheat (Triticum aestivum L.). Pak. J. Bi-ol. Sci., 10: 3237-3239.
Pandey, S. and H. Bhandari (2009). Drought, Coping Mechanism and Poverty: Insights from rainfed rice farming in Asia. Occasional Paper, 7. International Fund for Agricul- tural Development, (IFAD).
Powell, W., G. C. Machray and J. Provan (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Sci., 1: 215-222.
Racchi, M. L., A. Bove, A. Turchi, G. Bashir, M. Battaglia and A. Ca-mussi (2014). Genetic character- ization of Libyan date palm resources by microsatellite markers. Biotech., 4: 21-32.
Rahman, M. M., M. G. Rasaul, M. A. Hossain, K. M. Iftekharuddaula and H. Hasegawa (2012). Molecular characterization and genetic diversity analysis of rice (Oryza sativa L.) using SSR markers. J. Crop Improv., 26: 244-257.
Roldan-Ruiz, I. J. D., E. Van Bockstaele, A. Depicker and M. De Loose (2000). AFLP markers reveal high polymorphic rates in Ryegrasses (Lolium spp.). Mol. Breed., 6: 125- 134.
Schneider, K. A., M. E. Brothers and J. D. Kelly (1997). Marker-assisted selection to improve drought resistance in common bean. Crop Sci., 37: 51-60.
Sellamuthu, R., G. F. Liu, C. B. Ranganathan and R. Serraj (2011). Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crop Res., 124: 46-58.
Srividhya, A., L. R. Vemireddy, S. Sridhar, M. Jayaprada, P. V. Ra-manarao, A. S. Hariprasad, H. K. Reddy, G. Anuradha and E. Siddiq (2011). Molecular mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). J. Crop Sci. Biotech., 14: 45-56.
Tautz, D. (1989). Hypervariabflity of sim- ple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 17: 6463-6471.
Tuinstra, M., P. Goldsbrough, E. Grote and G. Ejeta (1992). Identification and RAPD mapping of quantitative trait loci associated with drought tolerance in sorghum. Plant Ge- nome I Conference, San Diego, CA, p 77 (Abstract).
Williams, K., A. Kubelik, K. Livak, J. Rafalski and V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.
Wong, S. C., P. H. Yiu, S. T. W. Bong, H. H. Lee, P. N. P. Neoh and A. Rajan (2009). Analysis of sarawak bario rice diversity using microsatellite markers. Am. J. Agric. Bio. Sci., 4: 298-304.
Yang, J. C., K. Liu, S. F. Zhang, X. M. Wang, Q. Zh, X. M. Wang and L. J. Liu (2008). Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron. Sin., 34: 111-118.
Youssef, M. A., A. Mansour and S. S. Solliman (2010). Molecular markers for new promising drought tolerant lines of rice under drought stress via RAPD-PCR and ISSR markers. J. Am. Sci., 6: 355-363.