GENETIC VARIATION AND PHYLOGENETIC RELATIONSHIPS AMONG MAIZE TYPES AND TEOSINTE AS REVEALED BY ISOZYMES AND RAPD MARKERS
Abstract
Genetic variation and phylogenetic relationships among four types of yellow maize (Zea mays L.); dent, flint, sweet and pop corn, and their wild relative; teosinte (Zea mexicana), were assessed using isozymes and random amplified polymorphic DNA (RAPD) markers. The results indicated that the percentage of polymorphic loci; for peroxidase and esterase isozymes, were 66.67% and 92.59%, respectively. By applying RAPD analysis, 116 bands were obtained from seven primers with 87.07% polymorphism. The UPGMA dendrogram based on genetic distance segregated the five genotypes into two main clusters. Both isozymes and RAPD markers separated teosinte into the first cluster, whereas the four maize types were grouped together in the seconds cluster. Dent and flint types were much close to each other with high similarity indices; 0.842 and 0.792 based on peroxidase and esterase isozymes, respectively. Furthermore, the flint type closely related to sweet type in RAPD cluster (similarity index of 0.588). This high variability detected among maize types and teosinte can be used in breeding programs to maximize the use of genetic resources.References
Abdel-Tawab, F. M., A. K. A. Selim, K. R. F. Hussein and M. A. Rashed (1982). Phylogenetic relationships in genus Zea and related genera: Electrophoretic patterns and molecular weight of protein. Egypt J. Genet. Cytol., 11: 265-273.
Agarwal, M., N. Shrivastava and H. Padh (2008). Advances in molecular marker techniques and their applications in plant science. Plant Cell Rep., 27: 617-631.
Bernardo, R. (2008). Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci., 48: 1649-1664.
Bruel, D. C., V. Carpentieri-Pipolo, A. C. Gerage, N. F. Junior, C. E. C. Prete, C. F. Ruas, P. M. Ruas, S. G. H. de Souza and D. D. Garbuglio (2006). Genetic distance estimated by RAPD markers and its relationship with hybrid performance in maize. Pesq. Agropec. Bras., Brasilia, 41: 1491-1498.
Carvalho, V. M. and M. F. P. S. Machado (2004). Esterase polymorphism in remainder populations of Aspidosperma polyneuron M. Arg. (Apocynaceae). Revista Arvore, 28: 625-631.
Carvalho, V. M., R. M. Marques, A. S. Lapenta and M. F. P. S. Machado (2003). Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genetics and Molecular Biology, 26: 195-198.
Carvalho, V. P., P. M. Ruas, C. F. Ruas, J. M. Ferreira and R. M. P. Moreira (2002). Assessment of genetic diversity in maize (Zea mays L.) landraces using intersimple sequence repeat (ISSR) markers. Crop Breed. Appl. Biotechnol., 2: 557-568.
Doebley, J. F. (1990). Molecular evidence and the evolution of maize. Economic Botany, 44: 6-27.
Doebley, J. F. and H. H. Iltis (1980). Taxonomy of Zea (Gramineae). A subgeneric classification with key to taxa. Am. J. Bot., 67: 982-993.
Dowd, P. F., E. T. Johnson and T. S. Pinkerton (2010). Identification and properties of insect resistance-associated maize anionic peroxidases. Phytochemistry, 71: 1289-1297.
Dyer, G. A., J. A. Serratos-Hernandez, H. R. Perales, P. Gepts, A. Pineyro-Nelson, A. Chavez, N. Salinas-Arreortua, A. Yonez-Naude, J. E. Taylor and E. R. Alvarez (2009). Dispersal of transgenes through maize seed systems in Mexico. PLoS ONE, 4: e5734.
Ellstrand, N. C., L. C. Garner, S. Hegde, R. Guadagnuolo and L. Blancas (2007). Spontaneous hybridization between maize and teosinte. J. Hered., 98: 183-187.
Frigo, M. J., C. A. Mangolin, R. S. J. Oliveira and M. F. P. S. Machado (2009). Esterase polymorphism for analysis of genetic diversity and structure of wild poinsettia (Euphorbia heterophylla) populations. Weed Science, 57: 54-60.
Fu, Z., J. Yan, Y. Zheng, M. L. Warburton, J. H. Crouch and J. S. Li (2010). Nucleotide diversity and molecular evolution of the PSY! Gene in Zea mays compared to some other grass species. Theor. Appl. Genet., 120: 709-720.
Gerdes, J. T. and W. F. Tracy (1994). Diversity of historically important sweet corn inbreds as estimated by RFLPs, morphology, isozymes, and pedigree. Crop Sci., 34: 26-33.
Gimenes, M. A. and C. R. Lopes (2000). Isoenzymatic variation in the germplasm of Brazilian races of maize (Zea mays L.). Genetics and Molecular Biology, 23: 375-380.
Ivy, N. A., M. S. Biswas, G. Rasul, T. Hossain and M. A. K. Mian (2010). Variations of genotypes of radish at molecular level using isozyme analysis for the identification of self-incompatible lines. Global J. Biotech. and Biochem., 5: 19-26.
Jaccard, P. (1901). Étude comparative de la distribuition florale dans une portion des Alpes et des Jura. Bull. Soc. Vandoise Sci. Nat., 37: 547-579.
Jaenicke-Despres, V., E. S. Buckler, B. D. Smith, M. T. P. Gilbert, A. Cooper, J. F. Doebley and S. Paabo (2003). Early allelic selection in maize as revealed by ancient DNA. Science, 302: 1206-1208.
Kantety, R. V., X. Zeng, J. Bennetzen and B. E. Zehr (1995). Assessment of genetic diversity in dent and pop-corn (Zea mays L.) inbred lines using intersimple sequence repeat (ISSR) amplification. Mol. Breed., 1: 365-373.
Kato, Y. T. A. (1984). Chromosome morphology and the origin of maize and its races. Evolutionary Biology, 18: 219-253.
Knott, O. R., R. I. Hamilton, G. E. Jones, L. Kannenberg, E. N. Carter, F. Scott-Pearse and H. A. Stappler (1995). Corn, harvest of gold: The history of field crop breeding in Canada. Univ Ext Press, University of Saskatchewan, Canada, p. 130-139.
Koo, D. and J. Jiang (2008). Extraordinary tertiary constrictions of Tripsacum dactyloides chromosomes: implications for karyotype evolution of polyploids driven by segment chromosome losses. Genetics, 179: 119-1123.
Labate, J. A., K. R. Lamkey, S. E. Mitchell, S. Kresovich, H. Sullivan and J. S. C. Smith (2003). Molecular and historical aspects of Corn Belt dent diversity. Crop Sci., 43: 80-91.
Leal, A. A., C. A. Mangolin, A. T. Amaral Júnior, L. S. A. Gonçalves, C. A. Scapim, A. S. Mott, I. B. O. Eloi, V. Cordovés and M. F. P. Silva (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res., 9: 9-18.
Matsuoka, Y., S. E. Mitchell, S. Kresovich, M. M. Goodman and J. Doebley (2002a). Microsatellites in Zea: variability, patterns of mutations, and use for evolutionary studies. Theor. Appl. Genet., 104: 436-450.
Matsuoka, Y., Y. Vigouroux, M. M. Goodman, J. Sanchez Garcia, E. Buckler and J. Doebley (2002b). A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA, 99: 6080-6084.
Moeller, D. A. and B. A. Schaal (1999). Genetics relationships among native American maize accessions of the Great Plains assessed by RAPDs. Theor. Appl. Genet., 99: 1061-1067.
Munhoz, R. E. F., A. J. Prioli, A. T. Amaral Júnior, C. A. Scapim and G. A. Simon (2009). Genetic distances between popcorn populations based on molecular markers and correlations with heterosis estimates made by diallel analysis of hybrids. Genet. Mol. Res., 8: 951-962.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70: 3321-3323
Orasmo, G. R., S. A. Oliveira-Collet, A. S. Lapenta and M. F. P. S. Machado (2007). Biochemical and genetic polymorphisms for carboxyl-esterase and acetylesterase in grape clones of Vitis vinifera L. (Vitaceae) cultivars. Biochemical Genetics, 45: 663-670.
Parentoni, S. N., J. V. Magalhães, C. A. P. Pacheco, M. X. Santos, T. Abadie, E. E. G. Gama, P. E. O. Guimarães, W. F. Meirelles, M. A. Lopes, M. J. V. Vasconcelos and E. Paiva (2001). Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica, 121: 197-208.
Pereira, L. K., C. A. Scapim, C. A. Mangolin, M. F. P. S. Machado, C. A. P. Pacheco and F. Mora (2008). Heterozygosity following half-sib recurrent selection in popcorn using isoenzyme markers. Electronic Journal of Biotechnology, 11: 107-115.
Prasanna, B. M., K. Pixley, M. L. Warburton and C. X. Xie (2010). Molecular marker-assisted breeding options for maize improvement in Asia Mol. Breed., 26: 339-356.
Reddy, V. R., G. Seshu, F. Jabeen and A. S. Rao (2012). Speciality corn types with reference to quality protein maize (Zea mays L.) -A review. Intl. J. Agric. Env. Biotech., 5: 393-400.
Resende, A. G., P. S. Vidigal-Filho and M. F. P. S. Machad (2004). Esterase polymorphism marking cultivars of Manihot esculenta, Crantz. Brazilian Archives of Biology and Technology, 47: 347-353.
Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgensen and R. W. Allard (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA, 81: 8014-8018.
Sanchez, J. J., M. M. Goodman and C. W. Stuber (2000). Isozymatic and morphological diversity in the races of maize of Mexico. Economic Botany, 54: 43-59.
Sanchez, J. J., M. M. Goodman and C. W. Stuber (2007). Racial diversity of maize in Brazil and adjacent areas. Maydica, 52: 13-30.
Scandalios, J. G. (1964). Tissue-specific isozyme variations in maize. J. Hered., 55: 281-285.
Schulman, A. H. (2007). Molecular markers to assess genetic diversity. Euphytica, 158: 313-321.
Shannon, L. M. (1968). Plant isozymes. Annu. Rev. Plant Physiol., 19: 187-210.
Sharma, L., B. M. Prasanna and B. Ramesh (2010). Phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the North East Himalayan Region. Genetica, 138: 619-631.
Stuber, C. W. and M. M. Goodman (1983). Allozyme genotypes for popular and historically important inbred lines of corn, Zea mays L. USDA Agr. Res. Results, Southern. Ser., no. 16.
Vallejos, C. E. (1983). Enzyme activity staining. In: "Isozyrnes in Plant Genetics and Breeding, (Tanksley S. D., Orton T. J. eds)", Elsevier, Amsterdam, Part A, pp 469.
Van-Heerwaarden, J., J. Doebley, W. H. Briggs, J. C. Glaubitz, M. M. Goodman, J. D. Jesus, S. Gonzalez and J. Ross-Ibarra (2011). Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc. Natl. Acad. Sci. USA, 108: 1088-1092.
Vigouroux, Y., J. C. Glaubitz, Y. Matsuoka, M. M. Goodman, S. G. Jesus and J. F. Doebley (2008). Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am. J. Bot., 95: 1240-1253.
Warburton, M. L., G. Wilkes, S. Taba, A. Charcosset, C. Mir, C. Bedoya, B. M. Prasanna, C. X. Xie, S. H. Hearne and J. Franco (2011). Gene flow between different teosinte species and into the domesticated maize gene pool. Genet. Res. Crop Evol., 58: 1243-1261.
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531‐6535.
Zeidler, M. (2000). Electrophoretic analysis of plant isozymes. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Biol., 38: 7-16.
Zilic, S., M. Milasinovic, D. Terzic, M. Barac and D. Ignjatovic-Micic (2011). Grain characteristics and composition of maize specialty hybrids. Span. J. Agric. Res., 9: 230-241.