EVALUATION OF SILICA NANOPARTICLES (SiO2NP) AND SOMACLONAL VARIATION EFFECTS ON GENOME TEMPLATE STABILITY IN RICE USING RAPD AND SSR MARKERS

Authors

  • Aziza A. Aboulila Genetics Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh
  • Ola A. Galal Genetics Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh

Abstract

Assessment of DNA changes and mutations at molecular level are important in plant breeding. In this study DNA changes in four rice genotypes (Sakha-107, Giza-179, Sakha-106 and Sakha-101) induced by silica nanoparticles (0, 150, 300 and 450 ppm) and somaclonal variations were determined using RAPD and SSR analyses. The potential effects of SiO2NP (< 100 nm) on rice plant growth were studied and the results showed positive and negative effects. Application of SiO2NP enhanced the fresh weight, shoot length and root length of the drought-sensitive rice varieties, but number of roots/seedling was increased with high concentration (450 ppm) in all studied genotypes. Mature embryos of four rice genotypes were used as explant source for callus induction and plant regeneration system. The obtained results showed significant effect of genotype on callus induction and plant regeneration in rice. For assessment of genome template stability percentage (GTS%), five RAPD primers were used and produced a total number of bands ranged from 25 to 51 in the studied genotypes. Results indicated that the GTS% was lower in somaclonal variations for all studied genotypes. Also, the changes occurred in DNA included gain or loss of bands compared with the control plants. On the other hand, among different concentrations of silica nanoparticles, the drought tolerant genotypes (Sakha-107 and Giza-179) gave the highest percentage of GTS in 150 ppm, while the drought sensitive genotypes (Sakha-106 and Sakha-101) gave the highest percentage on 300 and 450 ppm for Sakha-106 and sakha-101, respectively. These results confirmed the effects of SiO2NP and somaclonal variations on mutation and DNA instability and suggested that genomic template stability (GTS) reflecting changes in RAPD profiles was the most sensitive endpoint compared with the traditional indices such as root and shoot growth. On the other hand, two SSR markers (RM215 and RM518) were applied and generated 93.75 and 75% polymorphism, respectively. These variations among rice varieties and their treatments could help in rice plant breeding for drought tolerance by the selection of the suitable genotypes which are able to tolerate high drought stress conditions.

References

Aboulila, A. A. (2016). Molecular genetic diversity and efficient plant regeneration system via somatic embry-ogenesis in sweet potato (Ipomoea batatas (L.) Lam.). Egypt. J. Genet. Cytol., 45: 347-365.

Adhikari, T., S. Kundu and A. S. Rao (2013). Impact of SiO2 and Mo na-noparticles on seed germination of rice (Oryza sativa L.). International Journal of Agriculture and Food Science Technology, 4: 809-816.

Atienzar, F. A. and A. N. Jha (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a criti-cal review. Mutation Res., 613: 76-102.

Atienzar, F. A., M. Conradi, A. J. Evenden, A. N. Jha and M. H. Depledge (1999). Qualitative as-sessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna ex-pose to benzo[a]pyrene. Environ. Toxicol. Chem., 18: 2275-2282.

Atienzar, F. A., B. Cordi, M. B. Donkin, A. J. Evenden, A. N. Jha and M. H. Depledge (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae Palmaria palmate. Aquat. Toxicol., 50: 1-12.

Cambier, S., P. Gonzalez, G. Durrieu and J. P. Bourdineaud (2010). Cadmium-induced genotoxicity in Zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety, 73: 312-319.

Cenkci, S., M. Yildiz and İ. H. Ciğerci (2009). Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere, 76: 900-906.

Cenkci, S., İ. H. Ciğerci, M. Yildiz, C. Ozay, A. Bozdag and H. Terzi (2010). Lead contamination reduc-es chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ. Exp., 67: 467-473.

Courtois, B., L. Shen, W. Petalcorin, S. Carandang, R. Mauleon and Z. Li (2003). Locating QTLs controlling constitutive root traits in the rice population IAC165/Co39. Euphytica, 134: 335-345.

Crouch, J. H. and R. Ortiz (2004). Applied genomics in the improvement of crops grown in Africa. African Journal of Biotechnology, 3: 489-496.

Dudits, D., J. Gyorgyey, L. Bogre and L. Bako (1995). Molecular biology of somatic embryogenesis. In: Thorpe, T. A. (ed) In vitro Embryogenesis in Plants. Kluwer Aca-demic Dordrecht Boston London, p: 267-308.

Fan, Q., X. P. Xu, X. L. Huang and B. J. Li (2002). Callus formation and plant regeneration of indica rice variety Pei’ ai 64S. Acta Bot. Boreal Occident Sin., 22: 1469-1473.

Hittalmani, S., N. Huang, B. Courtois, R. Venuprasad, H. E. Shashidhar, G. G. Bagali, Z. K. Li, J. Y. Zhuang, K. L. Zheng, G. F. Liu, G. C. Wang, V. P. Singh, J. S. Sidhu, S. Srivantaneeyakul, G. Mclaren and G. S. Khush (2003). Identification of QTLs for growth and grain yield related traits in rice across nine locations in Asia. Theor. Appl. Genet., 107: 679-690.

Jain, S. M. (2001). Tissue culture-derived variation in crop improvement. Euphytica, 118: 153-166.

Kommamine, A., R. Kawahara, M. Matsumoto, S. Sunabori, T. Toya, A. Fujiwara, M. Tsukahara, J. Smith, M. Ito, H. Fukuda, K. Nomura and T. Fujimura (1992). Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry and molecular biolo-gy. In vitro Plant Cell Dev. Biol., 28: 11-14.

Physiology, 135: 364-399.

Lee, K. S., H. S. Jeon and M. Y. Kim (2002). Optimization of a mature embryo based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tiss. Org. Cult., 71: 9-13.

Lin, Y. J. and Q. Zhang (2005). Optimiz-ing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep., 23: 540-547.

Ma, H., Y. Yin, Z. F. Guo, L. J. Cheng, L. Zhang, M. Zhong and G. J. Shao (2011). Establishment of DNA fingerprinting of Liaojing series of japonica rice. Middle-East Journal of Scientific Research, 8: 384-392.

McCouch, S. R., L. Teytelman, Y. Xu, K. B. Lobos, K. Clare, M. Walton, B. Fu, R. Maghirang, Z. Li, Y. Xing, Q. Zhang, I. Kono, M. Yano, R. Fjellstrom, G. DeClerk, D. Schneider, S. Cartinhour, D. Ware and L. Stein (2003). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9: 199-207.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.

Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4325.

Nelson, J. R., C. W. Lawrence and D. C. Hinkle (1996). Thymine-Thymine dimer bypass by yeast DNA polymerase-Zeta. Science, 272: 1646-1649.

Ozawa, K., H. Kawahigashi, T. Kayano and Y. Ohkawa (2003). Enhancement of regeneration of rice (Oryza sativa L.) calli by integration of the gene involved in regeneration abil-ity of the callus. Plant Sci., 165: 395-402.

Ozturk, F., F. Duman, Z. Leblebici and R. Temizgul (2010). Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Envi-ron. and Experimental Botany, 69: 167-174.

Qu, Y., P. Mu, H. Zhang, C. Y. Chen, Y. Gao, Y. Tian, F. Wen and Z. Li (2008). Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 133: 187-200.

Tian, W. Z. (1994). Study on enhancing the regeneration capacity of callus from indica rice. Acta Gen. Sin., 21: 215-221.

Trejo-Tapia, G., U. M. Amaya, G. S. Morales, A. D. J. Sanchez, B. M. Bonfil, M. Rodriguez-Monroy and A. Jimenez-Aparicio (2002). The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell Tissue Org. Cult., 71: 41-46.

Visarada, K. B. R. S., M. Aailaja and N. P. Sarma (2002). Effect of callus induction media on morphology of embryogenic calli in rice geno-types. Biol. Plant, 45: 495-502.

Wang, Y. Q., Z. G. Duan, J. K. Huang and C. Y. Liang (2004). Efficient regeneration from in vitro culture of young panicles of rice (Oryza sati-va L.). Chinese Bull. Bot., 21: 52-60.

Yoshida, S., Y. Onish and K. Kitagishi (1959). Role of silicon in rice nutrition. Soil Plant and Food, 5: 127-133.

Zhang, S. B., Z. Zhu, L. Zhao, Y. D. Zhang, T. Chen, J. Lin and C. L. Wang (2007). Identification of SSR markers closely linked to eui gene in rice. Yi Chuan (Hereditas-Beijing), 29: 365-370.

Downloads

Published

2019-08-04

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2