BIOCHEMICAL AND MOLECULAR DIVERSITY AND THEIR RE- LATIONSHIP TO LATE WILT DISEASE RESISTANCE IN YEL- LOW MAIZE INBRED LINES

Authors

  • OLA A. GALAL Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El- Sheikh
  • AZIZA A. ABOULILA Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El- Sheikh
  • A. A. MOTAWEI Maize Research Section, Field Crops Research Institute, Agriculture Research Center, Sakha, Kafr El-Sheikh
  • A. A. GALAL Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh

Abstract

In an attempt to assess the genetic diversity among 18 maize inbred lines used in breeding programs and to identify specific genetic markers for late wilt disease resistance, esterase, peroxidase and RAPD markers were used. Fifteen RAPD primers were successful for evaluation of 18 inbred lines of maize. These biochemical and molecular techniques were efficient in detecting genetic polymorphism with an average of 100, 100 and 83.21% for esterase, peroxidase and RAPD, respectively. For cluster analysis, the 18 inbred lines were divided into four groups based on esterase and peroxidase isozyme and three groups based on RAPD analysis. Also, the principal coordinate analysis separated the 18 inbred lines for three groups (esterase and peroxidase analyses) and two groups (RAPD analysis) and the separation was according to the imported location more than the late wilt disease resistance. On the other hand, 45 out of 2191 amplified bands were found to be useful as unique markers. All primers produced genotype specific markers, except OPB-11. Also, L-11 maize inbred line scored the highest number of genotype-specific markers (14 unique markers) and these markers may help breeders for selection of late wilt resistant maize genotypes.

References

Abd El-Aziz, M. H., A. N. Attia, M. S. Sultan, M. A. Badawi and A. R. M. Al-Rawi (2016). Phenotypic and genetic diversity and their relationship to F1 performance for yield traits in some maize inbred lines. J. Agric. Chem. and Biotechn., 7: 95-104.

Aboulila, A. A. (2016). Molecular genetic diversity and efficient plant regeneration system via somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.). Egypt. J. Genet. Cytol., 45: 347-365.

Adhikari, S., S. Saha, T. K. Bandyopadhyay and P. Ghosh (2015). Efficiency of ISSR marker for characterization of Cymbopogon germplasms and their suitability in molecular barcoding. Plant Syst. Evol., 301: 439-450.

Caruso, C., G. Chilosi, L. Leonardi, L. Bertini, P. Margo, V. Buonocore and C. Caporal (2001). A basic peroxidase from wheat kernel with antifungal activity. Phytochem., 58: 743-50

Carvalho, D., Q. Anastacio and M. Luciana (2006). Proteins and isozymes electrophoresis in seeds of Desti (Leguminosae caesalpinioidea) artificially aged. Rev. Arv., 30: 19- 21.

Chandra, B. S. and S. Rajan (2000). Peroxidase isozyme as a marker for bacterial wilt resistance in tomato. Veg. Sci., 27: 136-141.

Christensen, J., G. Bauw, K. Welinder, M. Montagu and W. Boerjan (1998). Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol., 118: 125-135.

Converso, D. A. and M. E. Fernandez (1996). Ca2+ activation of wheat peroxidase: a possible physiological mechanism of control. Arch. Biochem. Biophys., 33: 59-65.

Dalisay, R. F. and J. A. Kuc (1995). Persistence of reduced penetration by Colletotrichum lagenarium into cucumber leaves with induced systemic resistance and its relation to enhanced peroxidases and chitinase activity. Physiol. Mol. Plant. Pathol., 47: 315-327.

Das, S., R. Aggarwal, K. D. Srivastava and S. M. S. Tomar (2002). Isozyme variations in some wheat genotypes in response to spot blotch infection. Indian Phytopathol., 55: 253-257.

Drori, R., A. Sharon, D. Goldberg, O. Rabinovitz, M. Levy and O. Degani (2012). Molecular diagnosis for Harpophora maydis, the cause of maize late wilt in Israel. Phytopath. Medi., 52: 16-29.

Dutta, S., G. Kumawat, B. P. Singh, D. K. Gupta, S. Singh, V. Dogra, K. Gaikwad, T. R. Sharma, R. S. Raje, T. K. Bandhopadhya, S. Datta, M. N. Singh, F. Bashasab, P. Kulwal, K. B. Wanjari, D. R. Cook and N. K. Singh (2011). Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol., 11: 17

El-Itriby, H. A., M. N. Khamis, R. M. El-Demerdash and H. A. El- Shafey (1984). In: Inheritance of resistance to late wilt (Cephalosporium maydis) in maize, p: 29-44. Proc. 2nd Medit. Conf. Genet., Cairo, Egypt.

El-Mehalawy, A. A., N. M. Hassanein, H. M. Khater, E. A. Daram El-Din and Y. A. Youssef (2004). Influence of maize root colonization by rhizosphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease. Inter. J. Agric. Biol., 6: 599-605.

El-Shafey, H. A., F. A. El-Shorbagy, I. I. Khalil and E. M. El-Assiuty (1988). Additional sources of resistance to the late-wilt disease of maize caused by Cephalosporium maydis. Agric. Res. Review, Egypt, 66: 221-230

El-Shafey, H. A. and L. E. Claflin (1999). Late wilt. Pages 43-44 in: Compendium of corn diseases, 3rd ed. D. G. White. The American Phytopathological Socitey. St. Paul, MN.

García-Carneros, A. B., I. Girón and L. Molinero-Ruiz (2012). Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain. Commun. Agric. Appl. Biol. Sci., 77: 173-179.

Khokhar, M. K., K. S. Hooda, S. S. Sharma, V. Singh (2014). Post flowering stalk rot complex of maize-present status and future prospects. Maydica, 59: 226-242

Kotresh, H., B. Fakrudin, S. M. Punnuri, B. K. Rajkumar, M. Thudi, H. Paramesh, H. Lohithaswa and M. S. Kuruvinashetti (2006). Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Mill sp.). Euphytica., 149: 113- 120.

Laemmli, U. K. (1970). Clavage of structural protein during assembly of head bacteriophage T. Nature, 227: 680-685.

Lanza, L. L. B., C. L. Souza Júnior, L. M. N. Ottoboni, M. L. C. Vieira and A. P. Souza (1997). Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor. Appl. Genet., 94: 1023-1030.

Lara, R. M., M. Florido, D. Plana, O. More, M. E. Gonzalez, M. Alvarez and M. M. Hernandez (2003). Isozymatic analysis for detecting In vitro variability and/or stability of economically important crops. Cultivos Tropic., 24: 56-62.

Mellon, J. E. and L. S. Lee (1985). Elicitation of cotton isoperoxidases by Aspergillis flavus and other fungi pathogenic to cotton. Physiol. Plant Pathol., 27: 281-288.

Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molecular weight plant DNA. Nu- cleic Acids Res., 8: 4321-3425.

Mydlarz, L. D. and C. D. Harvell (2006). Peroxidase activity and inducibility in the see fan coral exposed to a fungal pathogen. Comparative Biochem. Physiol., 10: 1016.

Nei, M. and W. H. Li (1979). Mathematical model for studying genetic variation in terms of restriction endo- nucleases. Proc. Natl. Acad. Sci., USA, 76: 5269-5273.

Oppong-Konadu, E. Y. R., R. K. Akromah, H. Adu-Dapaah and E. OKai (2005). Genetic diversity within Ghanaian cowpea germplasm based on SDS-PAGE of seed proteins. African Crop Sci., 3: 117-123.

Prasad, P., N. P. Eswara Reddy, R. J. Anandam and G. Lakshmikantha Reddy (2003). Isozymes variability among Fusarium udum resistant cultivars of pigeonpea (Cajanus cajan L. Millsp). Acta Physiologiae Plantarum., 25: 221- 228.

Prasanthi, L., B. V. Bhasker Reddy, K. Rekha Rani and P. Harnath Naidu (2009). Molecular markers for screening Fusarium wilt resistance in pigeonpea (Cajanus Cajan L. Millspaugh). Legume Res., 32: 19- 24.

Rafalski, J. A. and S. V. Tingey (1993). Genetic diagnostics in plant breed- ing: RAPDs, microsatellites and machines. Trends in Genet., 9: 275-280.

Rahim, A. M., A. A. Mia, F. Mahmud and K. S. Afrin (2008). Multivariate analysis in some mungbean (Vigna radiata L. Wilczek) accessions on the basis of agronomic traits. American-Eurasian J. of Scientific Res., 3: 217-221

Rudolph, K. and M. A. Stahmann (1966). Multiple hydrolases in bean leaves (Phaseolus vulgaris L.) and the ef- fect of the halo blight disease caused by Pseudomonas phaseolicola (Burkh.) Dowson 1- 2, Plant Physiol., 41: 389-394.

Sabet, K. A., A. S. Samra, M. K. Hingorani and I. M. Mansour (1961). Stalk and root rots of maize in the United Arab Republic. FAO Plant Protection Bulletin, 9: 121-125.

Samra, A. S., K. A. Sabet, M. Kamel and M. F. Abd El-Rahim (1971). Further studies on the effect of field conditions and cultural practices on infection with stalk-rot complex of maize. Arab Republic of Egypt, Min. of Agriculture, Plant Protection Dept., Bull., No. 2.

Scandalios, J. G. (1964). Tissue specific isozyme variation in maize. J. of Heredity, 55: 281-285.

Scandalios, J. G. (1969). Genetic control of mutiplex molecular forms of enzymes in plant. Biochem. Gent., 3: 37-79.

Selvaraj, I., P. Nagarajan, K. Thiyagarajan and M. Bharathi (2010). Predicting the relationship between molecular marker heterozygosity and hybrid performance using RAPD markers in rice (Oryza sativa L.) African J. of Biotech., 9: 7641-7653.

Sesli, M. and E. D. Yeğenoğlu (2010). Genetic relationships among and within wild and cultivated olives based on RAPDs. Genetics and Molecular Research, 9: 1550-1556.

Snedecor, C. W. and W. G. Cochran (1967): Statistical methods. 6th Iowa State Univ. Press, Ames: Iowa, USA.

Sonja, G., B. Snjezana, P. Svetislav, C. Tihomir, T. Marijana and K. Vinko (2008). Comparison of morphological and RAPD markers in evaluation of red clover (Trifolium pratense L.) changes caused by natural selection. Periodicum Biologorum, 110: 237-242.

Sulman, M., G. Fox, A. Osman, A. Inkerman, P. Williams and M. Michalowitz (2001). Relationship between total peroxidase activity and susceptibility to black point in mature grain of some barley cultivars. Proceeding of the 10th Australian Barley Technical Symposium.

Tornero, P., R. Chao, W. Luthin, S. Goff and J. Dangl (2002). Large-scale structure, function, analysis, of Arabidopsis RPM1 disease resistance protein. Plant Cell, 14: 435-50.

Varier, A. and R. J. Cook (1992). Discrimination between cultivars and lines of pearl millet by isoelectric focusing. Seed Sci. Technol., 203: 711.

Zeller, K. A., J. E. Jurgenson, E. M. El- Assiuty and J. F. Leslie (2000). Isozyme and amplified fragment length polymorphisms from Cephalosporium maydis in Egypt. Phytoparasitica, 28: 121-130.

Zeller, K. A., M. I. Abou-Serie, E. M. El- Assiuty, Z. M. Fahmy, F. M. Bekheet and J. F. Leslie (2002). Relative competitiveness and virulence of four clonal lineages of Cephalosporium maydis from Egypt toward greenhouse-grown maize. Plant Dis., 86: 373-378.

Downloads

Published

2019-04-13

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2