BIODEGRADATION OF S-TRIAZINE COMPOUNDS USING ACTINOBACTERIUM FRANKIA

Authors

  • M. REHAN Department of Genetics, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt.
  • AML EL-SHARKAWY Department of Genetics, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt.
  • AMIRA EL-KEREDY Department of Genetics, Tanta University, Tanta, Egypt.
  • G. EL-FADLY Department of Genetics, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt.

Abstract

Striazine compounds consider as herbicides for the control of broadleaf weeds in corn, sorghum and sugarcane crops in agriculture. Striazines metabolism initiate via a dechlorination reaction catalyzed by atrazine chlorohydrolase or amidohydrolase (TrzN/AtzA). Frankia strains ACN14a and EuI1c were exposed to different concentrations from three different striazine compounds include atrazine, desethyl atrazine and desethyl desisopropyl atrazine in media containing, carbon and nitrogen source (C+N+), carbon source and no nitrogen source (C+N-), and absence either carbon and nitrogen source (C-N-). Hydroxyatrazine and ammeline were the first detected metabolites in ACN14a and EuI1c cultures filtrate via HPLC/MS analysis. Data mining and bioinformatics analysis of selected Frankia ACN14a and EuI1c genomes exhibited an amidohydrolase gene (putative trzN, FRAAL1474 and/or FraEuI1c_5874) which could play a role in striazines degradation (dechlorination). A reverse genetic approach (qRT-PCR) was used to evaluate the gene expression of interested gene (FRAAL1474) under atrazine stress as the sole nitrogen source. The interested gene which encode amidohydrolase showed more than 30 fold changes in its mRNA expression level under 1 mM atrazine stress after 6 days exposure in comparison to untreated cells.

References

Beauchemin, N., M. Gtari, F. Ghodhbane-Gtari, T. Furnholm, A. Sen, L. Wall, F. Tavares, C. Santos, I. Nouioui, F. Xu, S. Lucus, A. Copeland, A. Lapidus, T. Galinadel Rio, H. Tice, D. Bruce, L. Goodwin, S. Pitluck, F. Larimer, M. L. Land, L. Hauser and L. S. Tisa (2012). What can the genome of an ineffective (Fix) Frankia. Strain (EuI1c) that is able to form nodules with its host plant tells us about actinorhizal symbiosis and Frankia evolution. The 112th General Meeting of the American Society for Microbiology, American Society for Microbiology, San Francisco, CA.

Benson, D. R. and B. W. Silvester (1993). Biology of Frankia strains, actinomycetes symbionts of actinorhizal plants. FEMS Microbiol. Rev., 57: 293-319.

Boundy-Mills, K., M. De Souza, R. Mandelbaum, L. Wackett and M. Sadowsky (1997). The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl. Environ. Microbiol., 63: 916- 923.

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem., 72: 248-254.

Chaia, E. E., L. G. Wall and K. Huss-Danell (2010). Life in soil by the Actinorhizal root nodule endophyte Frankia. Symbiosis, 3: 201-226.

Crawford, J. J., G. K. Sims, R. L. Mulvaney and M. Radosevich (1998). Biodegradation of atrazine under denitrifying conditions. Appl. Microbiol. Biotechnol., 49: 618-623.

Diagne, N., K. Arumugam, M. Ngom, M. Nambiar-Veetil, C. Franche, K. K. Narayanan and L. Laplaze (2013). Use of Frankia and Actinorhizal Plants for Degraded Lands Reclamation. Biomed. Res. Int., pp. 9.

Garcıa-Gonzalez, V., F. Govantes, L. J. Shaw, R. G. Burns and E. Santero (2003). Nitrogen control of atrazine utilization in Pseudomonas sp strain ADP. Appl. Environ. Microbiol., 69: 6987-6993.

Ghodbhane-Gtari, F., N. Beauchemin, D. Bruce, P. Chain, A. Chen, K. W. Davenport, S. Deshpande, C. Detter, T. Furnholm, L. Goodwin, M. Gtari, C. Han, J. Han, M. Huntemann, N. Ivanova, N. Kyrpides, M. L. Land, V. Markowitz, K. Mavrommatis, M. Nolan, I. Nouioui, I. Pagani, A. Pati, S. Pitluck, C. L. Santos, A. Sen, S. Sur, S. Szeto, F. Tavares, H. Teshima, S. Thakur, L. Wall, T. Woyke and L. S. Tisa (2013). Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis. Genome Announc., 1: 00085-00013.

Govantes, F., O. Porrúa, V. G. González and E. Santero (2009). Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb. Biotechnol., 2: 178-185.

Leja, K. and G. Lewandowicz (2009). Polymer Biodegradation and Biodegradable Polymers. A review. Pol. J. Environ. Stud., 2: 255-266.

Livak, K. J. and T. D. Schmittgen (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408.

Mandelbaun, T. R., D. L. Allan and L. P. Wackett (1995). Isolation and characterization of a Pseudomonas sp. that mineralizes the s-Triazine herbicide Atrazine. Appl. Environ. Microbiol., 4: 1451-1457.

Markowitz, V. M., F. Korzeniewski, K. Palaniappan, E. Szeto, G. Werner, A. Padki, X. L. Zhao, I. Dubchak, P. Hugenholtz, I. Anderson, A. Lykidis, K. Mavromatis, N. Ivanova and N. C. Kyrpides (2006). The integrated microbial genomes (IMG) system. Nucleic Acids Res., 34: D344-D348.

Monard, C., F. Martin-Laurent, O. Lima, M. Devers-Lamrani and F. Binet (2012). Estimating the biodegradation of pesticide in soils by monitoring pesticidedegrading gene expression. Biodegradation, 24: 203-213.

Niemann, J. and L. S. Tisa (2008). Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain Ccl3. J. Bacteriol., 190: 7864-7867.

Normand, P., P. Lapierre, L. S .Tisa, J. P. Gogarten, N. Alloisio, E. Bagnarol, C. A. Bassi, A. M. Berry, D. M. Bickhart, N. Choisne, A. Couloux, B. Cournoyer, S. Cruveiller, V. Daubin, N. Demange, M. P. Francino, E. Goltsman, Y. Huang, O. R. Kopp, L. Labarre, A. Lapidus, C. Lavire, J. Marechal, M.Martinez, J. E. Mastronunzio, B. C. Mullin, J. Niemann, P. Pujic, T. Rawnsley, Z. Rouy, C. Schenowitz, A. Sellstedt, F. Tavares, J. P. Tomkins, D. Vallenet, C. Valverde, L. G. Wall, Y. Wang, C. Medigue and D. R. Benson (2007). Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res., 17: 7-15.

Nouioui, I., N. Beauchemin, M. N. Cantor, A. Chen, J. C. Detter, T. Furnholm, F. Ghodhbane-Gtari, L. Goodwin, M. Gtari, C. Han, J. Han, M. Huntemann, X. S. Hua, N. Iyanova, N. Kyrpides, V. Markowitz, K. Mavrommatis, N. Mikhailova, H. P. Nordberg, G. Ovchinnikova, J. Pagani, A. Pati, A. Sen, S. Sur, E. Szeto, S. Thakur, L. Wall, C. L. Wei, T. Woyke and L. S. Tisa (2013). Draft Genome sequence of Frankia sp. strain BMG5.12, a nitrogenfixing actinobacterium isolated from Tunisian soils. Genome Announc., 1: e00468-13.

Oakley, B., M. North, J. F. Franklin, B. P. Hedlund and J. T. Staley (2004). Diversity and distribution of Frankia strains symbiotic with ceanothus in California. Appl. Environ. Microbio., 11: 6444-6452.

Persson, T., D. R. Benson, P. Normand, B. V. Heuvel, P. Pujic, O. Chertkov, H. Teshima, D. C. Bruce, C. Detter, R. Tapia, S. Han, J. Han, T. Woyke, S. Pitluck, L. Pennacchio, M. Nolan, N. Ivanova, A. Pati, M. L. Land, K. Pawlowski and A. M. Berry (2011). Genome sequence of ''Candidatus Frankia datiscae ''Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J. Bacteriol., 24: 7017-7018.

Qingyan, L. I., L. I. Ying, Z. H. U. Xikun and C. A. I. Baoli (2008). Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. Journal of Environmental Sciences, 20: 1226-1230.

Reineke, W. (2001). Aerobic and anaerobic biodegradation potentials of microorganisms. The Handbook of Environmental Chemistry (2K), Springer Verlag Berlin Heidelberg, p. 1-161.

Rousseaux, S., A. Hartmann and G. Soulas (2001). Isolation and characterisation of new Gram-negative and Grampositive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol., 36: 211-222.

Sajjaphan, N., N. Shapir, L. P. Wackett, M. Palmer, B. Blackmon, J. Tomkins and M. J. Sadowsky (2004). Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-Kilobase region and are functional in Escherichia coli. Appl. Environ. Microbiol., 70: 4402-4407.

Schwencke, J. and M. Carú (2001). Advances in actinorhizal symbiosis: host plant- Frankia interactions, biology and applications in arid land reclamation. Arid Land Research and Management, 4: 285-327.

Sen, A., N. Beauchemin, D. Bruce, P. Chain, A. Chen, K. W. Davenport, S. Deshpande, C. Detter, T. Furnholm, F. Ghodbhane-Gtari, L. Goodwin, M. Gtari, C. Han, J. Han, M. Huntemann, N. Ivanova, N. Kyrpides, M. L. Land, V. Markowitz, K. Mavrommatis, M. Nolan, I. Nouioui, I. Pagani, A. Pati, S. Pitluck, C. L. Santos, S. Sur, E. Szeto, F. Tavares, H. Teshima, S. Thakur, L. Wall, J. Wishart, T. Woyke and L. S. Tisa (2013). Draft genome sequence of Frankia sp. strain QA3, a nitrogenfixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc., 1: e00103-00113.

Singh, P., C. R. Suri and S. S. Cameotra (2004). Isolation of a member of Acinetobacter species involved in atrazine degradation. Mol. Cell Biol. Res. Commun., 317: 697-702.

Strong, L. C., C. Rosendahl, G. Johnson, M. J. Sadwosky and L. P. Wackett (2002). Arthrobacter aurescens TC1 metabolizes diverse striazine ring compounds. Appl. Environ. Microbiol., 68: 5973-5980.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729.

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4876-4882.

Tisa, L. S., M. S. Chval, G. D. Krumholz and J. Richards (1999). Antibiotic resistance patterns of Frankia strains. Can. J. Bot., 77: 1257-1260.

Tisa, L. S., N. Beauchemin, M. Gtari, A. Sen and L. Wall (2013). What stories can the Frankia genomes start to tell us? J. Biosci., 38: 719-726.

Tisa, L., M. Mcbride and J. C. Ensign (1983). Studies of growth and morphology of Frankia strains Ean1pec, Eui1c, Cpi1, and Acn1ag. Can. J. Bot., 61: 2768-2773.

Wall, L., N. Beauchemin, M. N. Cantor, E. Chaia, A. Chen, J. C. Detter, T. Furnholm et al. (2013). Draft Genome sequence of Frankia sp. strain BCU110501, a nitrogenfixing actinobacterium isolated from nodules of Discaria trinevis. Genome Announc., 1: e00503-13.

Wang, Q. and S. Xie (2012). Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int. Biodeterior Biodegradation, 71: 61-66.

Zhang, Y., Z. Jiang, B. Cao, M. Hu, Z. G. Wang and X. N. Dong (2011). Metabolic ability and gene characteristics of Arthrobacter sp. strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. Int. Biodeterior Biodegradation, 65: 1140-1144.

Zhang, Y., Z. Ning, J. Zhao, P. Xinran, M. Shuyan and H. Miao (2009). Isolation of two atrazine-degrading strains and their degradation characteristics. Int. J. Agric. & Biol. Eng., 3: 27-32.

Downloads

Published

2016-01-23

Issue

Section

Articles