GENETIC AND BEHAVIORAL INFLUENCES OF QUININE AND MONOSODIUM GLUTAMATE ON Drosophila melanogaster

Authors

  • AMIRA EL-KEREDY Genetics Department, faculty of Agriculture, Tanta University, Egypt

Abstract

Genetic and behavioral effects of both quinine and monosodium glutamate were studied on a natural population of Drosophila melanogaster from Tanta, Egypt. The main aim of this study was to determine the long-term effects (toxicity) and short-term effects (choice) of quinine (QUI) and monosodium glutamate (MSG) on D. melanogaster. Two concentrations of quinine) 0.2, 2.0 g/l) were used, and two concentrations of monosodium glutamate (10, 22 g/l).
Regarding long-term effects (toxicity) the genetic load was measured to be 1.23 and 1.43 for lower and higher of quinine concentrations, and 0.49 and 0.94 for monosodium glutamate concentrations, respectively. Cytological study revealed that there were different types of selection regarding the inversions 2L(Cy), 2R(NS), 3L(P), 3R(Mo) and 3R(C). Inversion 2R(NS) was eliminated from the basic population after treatment with quinine and monosodium glutamate concentrations in fifth and tenth generations.
Regarding short-term effects, this study used quinine as a case of a substance which humans report as “tasting bitter" and monosodium glutamate as "tasting umami". The doseeffect- behavioral functions (choice) for quinine and monosodium glutamate concentrations were showed. The influence of quinine on the preference was different in larva compared to pupa, while in monosodium glutamate case; there was no difference between larva and pupa.
The study focused on the genetics and behavioral effects the results showed correlation between toxicity and briefaccess tests of bitter and umami tastants.
The results lay a foundation for genetic and behavior effects in genetic model organism. Increasing the concentration of quinine and monosodium glutamate increasingly the harmful effect on insects, larvae and pupae Drosophila, also represented in influencing the chromosomes (inversions of chromosomes) as well as behavior change as the results showed.

References

Berl, S. and D. D. Clark (1983). The metabolic compartmentation concept, in Gfutamine, Glutamate and GABA in the Central Nervous System (Hertz L., Kvamme E., McGeer E. G., and Schousboe A., eds), p. 205-217. Alan R. Liss Inc., New York.

Berl, S., A. Lajtha and H. Waelsch (1961). Amino acid and protein metabolism. V1. Cerebral compartments of glutamic acid metabolism. J. Neurochem. 7: 186-197.

Beyreuther, K., H. K. Biesalski, J. D. Fernstrom, P. Grimm, W. P. Hammes, U. Heinemann, O. Kempski, P. Stehle, H. Steinhart and R. Walker.(2006). Consensus meeting: monosodium glutamate – an update. European Journal of Clinical, 1-10

Chandrashekar, J., K. L. Mueller, M. A. Hoon, E. Adler, L. Feng, W. Guo, C. S. Zuker and N. J. Ryba (2000). T2Rs function as bitter taste receptors. Cell, 100: 703-711.

Chung, C. S. (1962). Relative genetic loads due to lethal and determental genes in irradiated populations of Drosophila melanogaster. Genetics, 47: 1489-1504.

Colomb, J., N. Grillenzoni, A. Ramaekers and R. F. Stocker (2007). Architecture of the primary taste center of Drosophila melanogaster larvae. J. Comp. Neurol., 502: 834-847.

Critchley, H. D. and E. T. Rolls (1996). Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem, Senses, I., 139: 135-145.

Dahanuker, A., K. Foster, van der Goes W. M. van Naters and J. R. Carlson (2001). A Gr receptor is required for response of suger trehalose in taste neurons of Drosophila. Nat. Neurosci., 4: 1182-1186.

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11: 1-42.

Ebbs, M. L. and H. Amrein (2007). Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugersn Arch., 454: 735-747.

El-Keredy, A., M. Schleyer, C. Kƍnig, A. Ekim and B. Gerber (2012). Behavioural analyses of quinine processing in choice, feeding and learning of larval Drosophila. PLoS One, 7: e40525.

Gerber, B., R. F. Stocker, T. Tanimura and A. S. Thum (2009). Smelling, tasting, learning: Drosophila as a study case. Results Probl. Cell Differ., 47: 139-185.

Glendinning, J. I. (1994). Is the bitter rejection response always adaptive? Physiol. Behav., 56: 1217-1227.

Go, Y., Y. Satta, O. Takenaka and N. Takahata (2005). Lineage-Specific loss of function of bitter taste receptor genes in humans and non-human primates. Genetics, 170: 313-326.

Goldenberg, A. M. and L. F. Wexler (1988). Quinine overdose: Review of toxicity and treatment. Clin. Cardiol., 10: 716-718.

Gordon, M. O. and K. Scott (2008). Motor control in a Drosophila taste circit. Neuron, 61: 373-384.

Hegarty, M. P. (1987). Toxic amino acids in foods of animals and man. Proc. Nutr. Soci. Australia, 11: 73-81.

Keene, A. C., M. J. Krashes, B. Leung, J. A. Bernard and S. Waddell (2006). Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr. Biol., 16: 1524-1530.

Kim, J. R., S. H. Jung, J. M. Regan and B. E. Logan (2007). Electricity generation and microbial community analysis of alcohol. Bioresource Technology, 98: 2568-2577.

Kirkpatrick, M. and N. Barton (2006). Chromosome inversions, local adaptation and speciation. Genetics, 173: 419-434.

Kƍning, C., M. Schleyer, J. Leibiger, A. El- Keredy and Gerber B. (2014). Bitter–Sweet Processing in Larval Drosophila. Chem. Senses, 1-17.

Kuninaka, A. (1960). Studies on taste of ribonucleic acid derivatives. J Agric. Chem. Soc. Japan, 34: 487-492.

Lee, Y., S. J. Moon and C. Montell (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA, 106: 4495-4500.

Lindsey, D. L. and E. H. Grell (1968). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publ. 627, Washington, DC.

Lucas, D. R. and J. P. Newhouse (1957). The toxic effect of sodium-L-glutamate on the inner layers of the retina. AMA Arch. Ophthalmol., 58: 193-201.

Maruyama, Y., E. Pereira, R. F. Margolskee, N. Chaudhari and S. Roper (2006). Umami responses in mouse taste cells indicate more than one receptor. The Journal of Neuroscience, 26: 2227-2234.

Megeed, M. S., S. Dora and A. A. Ali. (1997). Genetic effects of monosodium glutamate on Drosophila. Proceeding of the 7th International Conference of Environment Protection, Alexandria, Egypt, p. 295-304

Moon, S. J., Y. Lee, Y. Jiao and C. Montell (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol., 19: 1623-1627.

Morton, N. E., J. F. Crow and H. J. Muller (1956). An estimate of the mutational damage in man from data on consanguineosus marriages. Proc. Natl. Acad. Sci. US, 42: 855-863.

Olney, J. W. and L. G. Sharpe (1969). Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science, 166: 386-388.

Oser, B. L., K. Morgareidge and S. Carson (1975). Monosodium glutamate studies in four species of neonatat and infant animals. Food Cosmet. Toxicol., 13: 7-14.

Santos, M. (2009). Recombination Load in a Chromosomal Inversion Polymorphism of Drosophila subobscura. Genetics, 181: 803-809.

SAS (1988). SAS/STATUser’s Guide. Release 6.03 Edition. SAS Institute, Inc., Cary, NC.

Scott, K., R. Brady, Jr. A. Cravchik, P. Morozov, A. Rzhetsky, C. Zuker, and R. Axel (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell, 104: 661-673.

Schwaerzel, M., M. Monastrrioti, Friggi-Grelin F. Scholz, S. Birman and M. Heisenberg (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci., 23: 10495-10502.

Simantov, R. (1989). Glutamate neurotoxicity in culture depends on the presence of glutamine: Implications for the role of glial cells in normal and pathological brain development. J. Neurochemistry, 52: 1694-1699.

Smadja, C., P. Shi, R. K. Butlin and H. M. Robertson (2009). Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the Pea Aphid, Acyrthosiphon pisum. Mol. Biol. Evol., 26: 2073-2086.

Stegink, L. D., L. J. Filer and G. L. Baker (1973). Monosodium glutamate metabolism in the neonatal pig: Effect of load on plasma, brain, muscle and spinal fluid free amino acid levels. J. Nutr., 103: 1138-1145.

Stocker, R. F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res., 275: 3-26.

Stocker, R. F. (2008). Design of the larval chemosensory system. In: "Brain Development in Drosophila melanogaster" (ed. Gerhard M. Technau), Adv. Exp. Med. Bio., 628: 69-81.

Sugai, G. (2007). Responsiveness-to-intervention: Lessons learned and to be learned. Keynote presentation at and paper for the RTI Summit, US Department of Education, Washington, DC.

Tanimura, T. and H. Ishimoto (2003). Molecular neurophysiology of taste in Drosophila. CMLS, Cell. Mol. Life Sci., 60: 001-09.

Thorne, N. and H. Amrein (2008). Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons. J. Comp. Neurol., 506: 548-56810.1002/cne.21547.

Tully, T., T. Preat, S. C. Boynton and M. DelVecchio (1994). Genetic dissection of consolidated memory in Drosophila. Cell, 79: 35-47.

Ueno, K., M. Ohta, H. Morita, Y. Mikuni,

S. Nakajima, K. Yamamoto and K. Isono (2001). Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr. Biol., 11: 1451-1455.

Zhao, G. Q., Y. Zhang, M. A. Hoon, J. Chandrashekar, I. Erlenbach, N. J. Ryba and C. S. Zuker (2003). The receptors for mammalian sweet and umami taste. Cell, 115: 255-266.

Downloads

Published

2016-01-12

Issue

Section

Articles