MAPPING OF QTLs CONTROLLING RESISTANCE TO LEAF STRIPE (Pyrenophora graminea) IN EGYPTIAN BARLEY
Abstract
Leaf stripe in barley, caused by Pyrenophora graminea, is an important seed-borne disease in organically grown as well as in conventionally grown Nordic and Mediterranean barley districts. In the present work, a QTL map for F2 barley and 7 LSLs) distributed on 8 linkage groups and spanning 2099.4 cM of the barley genome. The size of linkage groups varied from 117.8 cM for LG2 (2H) to 482.9 cM for LG6 (6H) with an average length of 262.4 cM. Based on the used anchor SSR markers, only four linkage groups were assigned to chromosomes, where LG2, LG5, LG6 and LG7 were assigned to chromosomes 2H, 5H, 6H and 7H, respectively. Single point analysis was used to identify genomic regions controlling the leaf stripe severity and plant height traits. A total of 40 QTL were identified for the disease severity (DS) and plant height (PH) traits (20 QTL for disease severity and 20 QTL for plant height). This work represents the first genetic linkage map for barley population derived from an intraspecific cross between At20 and At29 showing chromosomal regions associated with disease severity and plant height traits in barley.References
Adawy, S. S., A. A. Diab, M. A. Atia and E. H. Hussein (2008). Construction of genetic linkage map showing chromosomal regions associated with some agronomic traits in cot-ton. Journal of Applied Sciences Research, 4: 433-450.
Adawy, S. S., A. A. Diab, A. I. Sayed, S. D. Ibrahim, S. I. El-Morsy and M. M. Saker (2013). Construction of genetic linkage map and QTL analysis of net blotch resistance in barley. IJABR, 4: 348-363.
Adawy, S. S. (2007). An evaluation of the utility of simple sequence repeat loci (SSR), expressed sequence tag microsatellites (EST-SSR) as molecular markers in cotton. Journal of Applied Science Research, 3: 1581-1588.
Ardley, H. and P. Robinson (2005). E3 ubiquitin ligases. Essays Bio-chemical, 41: 15-30.
Arru, L., R. E. Niks, P. Lindhout, G. Vale, E. Francia and N. Pecchioni (2002). Genomic regions deter-mining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 45: 460-466.
Arru, L., E. Francia and N. Pecchioni (2003). Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the ‘Steptoe’ × ‘Morex’ spring barley cross. Theor. Appl. Genet., 106: 668-675.
Babaiy, A. H., S. Aharizad, A. Mohammadi and M. Yarnia (2011). Survey correlation of yield and yield components in 40 lines barley (Hordeum vulgare L.) in Region Tabriz. Middle-East Journal of Scientific Research, 10: 149-152.
in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet., 125: 1473-1485.
Bezant, J., D. Laurie, N. Pratchett, J. Chojecki and M. Kearsey (1996). Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity, 77: 64-73.
Bhattacharya, P., S. Kumaria, S. Kumar and P. Tandon (2013). Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl, an endangered medicinal orchid species. Gene, 529: 21-26.
Bichoński, A. and T. Śmiałowski (2004). Relationships and correlations between brewery traits of the spring barley varieties. Food Science and Technology, 7(2): #06.
Biselli, C., S. Urso, L. Bernardo, A. Tondelli, G. Tacconi, V. Martino, S. Grando and G. Valè (2010). Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor. Appl. Genet., 120: 1207-1218.
Bulgarelli, D., N. C. Collins, G. Tacconi, E. Dellaglio, R. Brueggeman, A. Kleinhofs, A. M. Stanca and G. Valè (2004). High-resolution ge-netic mapping of the leaf stripe re-sistance gene Rdg2a in barley. Theor. Appl. Genet., 108: 1401-1408.
Chloupek, O., B. P. Forster and W. T. B. Thomas (2006). The effect of semi-dwarf genes on root system size in field-grown barley. Theor. Appl. Genet., 112: 779-786.
Collard, B. C. and D. J. Mackill (2009). Start codon targeted (SCOT) pol-ymorphism: A simple novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology, 27: 86-93.
Diab, A. A., M. A. Atia, E. H. Hussein, H. A. Hussein and S. S. Adawy (2013). A multidisciplinary ap-proach for dissecting qtl control-ling high-yield and drought toler-ance-related traits in durum wheat. International Journal of Agricul-tural Science and Research, 3: 99-116.
Flavell, R. B. (1995). Plant biotechnology R and D the next ten years. Tibtech., 13: 313-319.
Ganal, M. W. and M. S. Roder (2007). Microsatellite and SNP markers in wheat breeding, In: Varshney RK, Tuberosa R, eds. Genomic Assisted Crop Improvement: Genomics Applications in Crops. The Netherlands Springer, 2: 1-24.
Giese, H., A. G. Holm-Jensen, H. P. Jensen and J. Jensen (1993). Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor. Appl. Genet., 85: 897-900.
Gonzalo, M. J. and E. van der Knaap (2008). A comparative analysis into the genetic bases of morphol-ogy in tomato varieties exhibiting elongated fruit shape. Theor. Appl. Genet., 116: 647-656.
Guo, L. L., X. J. Liu, X. C. Liu, Z. M. Yang, D. Y. Kong, Y. J. He and Z. Y. Feng (2013). The construction of molecular genetic map of barley using SRAP markers. In Advance in Barley Sciences (p. 433-440). Springer Netherlands.
Hussein, E. H., A. M. Rady, S. Attia and S. S. Adawy (2006). Molecular characterization and genetic rela-tionships among cotton genotypes I- RAPD, ISSR and SSR analysis. Arab J. Biotech., 9: 222-229.
Joshi, C. P., H. Zhou, X. Huang and V. L. Chiang (1997). Context sequences of translation initiation codon in plants. Plant Mol. Biol., 35: 993-1001.
Justesen, B. H., T. Laursen, G. Weber, A. T. Fuglsang, B. L. Møller and T. nther Pomorski (2013). Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis. Analytical Chemistry, 85: 3497-3500.
Kicherer, S., G. Backes, U. Walther and A. Jahoor (2000). Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor. Appl. Genet., 100: 881-888.
Kjaer, B., J. Jensen and H. Giess (1995). Quantitative trait loci for heading date and straw characters in barley. Genome, 38: 1098-1104.
Kumar, A., M. E. Elias, F. Ghavami, X. Xu, S. Jain, F. A. Manthey, M. Mergouma, M. S. Alamri, P. M. Kianian and F. K. Shahryar (2013). A major QTL for gluten strength in durum wheat (Triticum turgidum L. var. durum). Journal of Cereal Science, 57: 21-29.
Kwak, J. M., I. C. Mori, Z. M. Pei, N. Leonhardt, M. A. Torres, J. L. Dangl, R. E. Bloom, S. Bodde, J. D. Jones and J. I. Schroeder (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROSa•dependent ABA signaling in Arabidopsis. The EMBO Jour-nal, 22: 2623-2633.
SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOP-ING LEAF in specifying floral or-gan identities and meristem fate. The Plant Cell Online, 23: 2536-2552.
Luo, C. X. H., H. H. Chen, S. J. Ou, M. P. Gao, J. S. Brown, C. T. Tondo and R. J. Schnell (2011). Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. 39: 676-684.
Macaulay, M., L. Ramsay, W. Powell and R. Waugh (2001). A representative, highly informative ‘genotyping set’ of barley SSRs. Theor. Appl. Genet., 102: 801-809.
Manly, K. F. and R. H. Cudmore Jr. (1997). Map Manager QT, Soft-ware for mapping quantitative trait loci. Abstracts of the 11th International Mouse Genome Conference, St. Petersburg, 97.
Marquez-Cedillo, L. A., P. M. Hayes, A. Kleinhofs, W. G. Legge, B. G. Rossnagel, K. Sato, S. E. Ullrich and D. M. Wesenberg (2001). QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet., 103: 625-637.
Mueller, K. J., G. Valè and D. Enneking (2003). Selection of resistant spring barley accessions after natural infection with leaf stripe (Pyrenohora graminea) under organic farming conditions in Germany and by sandwich test. J. Plant Pathol., 85: 9-14.
Muhanad, W. A. (2003). Quantitative trait loci mapping for agronomic and fiber quality traits in upland cotton (Gossypium hirsutum L.) using molecular markers. Ph.D. Thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College, pp 134.
Mulpuri, S., T. Muddanuru and G. Francis (2013). Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L. and development of a codominant SCAR marker. Plant Science, 207: 117-127.
Patil, R. M., S. A. Tamhankar, M. D. Oak, A. L. Raut, B. K. Honrao, V. S. Rao and S. C. Misra (2013). Map-ping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica, 190: 117-129.
Paux, E., P. Sourdille, J. Salse, C. Saintenac, F. Choulet, P. Leroy, A. Korol, M. Michalak, S. F. Kianian, W. Spielmeyer, E. S. Lagudah, D. J. Somers, A. Kilian, M. Alaux, S. Vautrin, H. Bergès, K. Eversole, R. Appels, J. Šafář, H. Šimková, J. Doležel, M. Bernard and C. Feuillet (2008). A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 322: 101-104.
Pecchioni, N., P. Faccioli, H. Toubia-Rahme, G. Valè and V. Terzi, (1996). Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theor. Appl. Genet., 93: 97-101.
Pecchioni, N., G. Vale, H. Toubia‐ Rahme, P. Faccioli, V. Terzi, G. Delogu and G. Fischbeck (1999). Barley Pyrenophora graminea interaction: QTL analysis and gene mapping. Plant Breeding, 118: 29-35.
Platenkamp, R. (1976). Investigations on the infection pathway of Drechslera graminea in germi-nating barley. Royal Vet. Agric. Univ. Yearbook. Copenhagen, Denmark, 1976: 49-64.
Porta-Puglia, A., G. Delogu and G. Vannacci (1986). Pyrenophora graminea on winter barley seed: effect on disease incidence and yield losses. J. Phytopathol., 117: 26-33.
Qi, X., R. E. Niks, P. Stam and P. Lindhout (1998). Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor. Appl. Genet., 96: 1205-1215.
Quarrie, S. A., A. Steed, C. Calestani, A. Semikhodskii, C. Lebreton, C. Chinoy, N. Steele, D. Pljevljakusić, E. Waterman, J. Weyen, et al. (2005). A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring× SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet., 110: 865-880.
Rao, H. S., O. P. Basha, N. K. Singh, K. Sato and H. S. Dhaliwal (2007). Frequency distributions and com-posite interval mapping for QTL analysis in ‘Steptoe’x ‘Morex’ barley mapping population. Barley Genetics Newsletter, 37: 5-20. Rodríguez-Suárez, C., M. J. Giménez, N. Gutiérrez, C. M. Ávila, A. Macha-do, E. Huttner, M. C. Ramírez, A. C. Martín, A. Castillo, A. Kilian, A. Martín and S. G. Atienza (2012). Development of wild bar-ley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor. Appl. Genet., 124: 713-722.
Rostoks, N., S. Mudie, L. Cardle, J. Russell, L. Ramsay, A. Booth, J. T. Svensson, S. I. Wanamaker, H. Walia, E. M. Rodriguez, P. E. Hedley, H. Liu, J. Morris, T. J. Close, D. F. Marshall and R. Waugh (2005). Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genomics, 274: 515-527.
Rubenstein, P. A. and J. L. Strominger (1974). Enzymatic Synthesis of Cytidine Diphosphate 3, 6-Di-deoxyhexoses IX. purification and properties of the cytidine diphosphate-d-glucose pyroph-osphorylase from pasteurella pseudotuberculosis, type v. Journal of Biological Chemistry, 249: 3789-3796.
Sawant, S. V., P. K. Singh, S. K. Gupta, R. Madnala and R. Tuli (1999). Conserved nucleotide sequences in highly expressed genes in plants. Journal of Genetics, 78: 123-131.
Shahinnia, F., A. Rezai, B. E. Sayed-Tabatabaei, T. Komatsuda and S. A. Mohammadi (2006). QTL mapping of heading date and plant height in barley cross" Azuamugi" x "Kanto Nakate Gold". Iranian Journal of Biotechnology, 4: 88:94.
Shirasawa, K., E. Asamizu, H. Fukuoka, A. Ohyama, S. Sato, Y. Nakamura, Y. Nakamura, S. Tabata, S. Sasamoto, T. Wada, Y. Kishida, H. Tsuruoka, T. Fujishiro, M. Yamada and S. Isobe (2010). An interspe-cific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet., 121: 731-739.
Sim, S., G. Durstewitz, J. Plieske, R. Wieseke, M. W. Ganal, A. V. Deynze, J. P. Hamilton, C. R. Buell, M. Causse, S. Wijeratne and D. M. Francis (2012). Develop-ment of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One, 7: e40563.
Skou, J. P., B. J. Nielsen and V. Haahr (1994). Evaluation and importance of genetic resistance to leaf stripe in western European barleys. Acta Agric. Scand Sect. B Soil Plant Sci., 44: 98-106.
Stange, M., T. A. Schrag, H. F. Utz, C. Riedelsheimer, E. Bauer and A. E. Melchinger (2013). High-density linkage mapping of yield compo-nents and epistatic interactions in maize with doubled haploid lines from four crosses. Molecular Breeding, 32: 533-546.
Stein, N., M. Prasad, U. Scholz, T. Thiel, H. Zhang, M. Wolf, R. Kota, R. K. Varshney, D. Perovic, I. Grosse and A. Graner (2007). A 1000-loci transcript map of the barley genome. New anchoring points from integrative grass genomics. Theor. Appl. Genet., 114: 823-839.
Sturbois-Balcerzak, B., S. J. Stone, A. Sreenivas and J. E. Vance (2001). Structure and expression of the murine phosphatidylserine syn-thase-1 gene. Journal of Biological Chemistry, 276: 8205-8212.
barley cultivars to Pyrenophora graminea,the incitant of leaf stripe. Can. J. Plant Pathol., 5: 294-301.
Teulat, B., O. Merah, I. Souyris and D. This (2001). QTLs for agronomic traits from a Mediterranean barley progeny grown in several envi-ronments. Theor. Appl. Genet., 103: 774-787.
Thomsen, S. B., H. P. Jensen, J. Jensen, J. P. Skou and J. H. Jorgensen (1997). Localization of a resistance gene and identification of sources of resistance to barley leaf stripe. Plant Breeding, 116: 455-459.
Varshney, R. K., A. Graner and A. E. Sorrell (2005). Genic microsatellite markers in plants: features and applications. Trends in Bio-technology, 23: 48-55.
Voorrips, R. E. (2002). MapChart: Soft-ware for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93: 77-78.
Vos, P., R. Hogers, M. Bleeker, M. Reijans, L. van de, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acid Res., 23: 4407-4414.
Wang, S., C. J. Basten and Z. B. Zeng (2007). Windows QTL Cartogra-pher 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu. edu/qtlcart/WQTLCart.htm.
Werner, K., W. Friedt and F. Ordon (2006). Localisation and combi-nation of resistance genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids and molecular markers. Euphytica, DOI:10.1007 /s10681-006-9206-4.
Yang, J., J. Zhu and R. William (2007). Mapping genetic architecture of complex trait in experimental populations. Bioinformatics, 23: 1527-1536.
YueHui, Z., Y.S. Zhu, L. Lian, H. G. Xie, J. F. Zhang and H. A. Xie (2013). Genetic analysis and fine mapping of the pubescence gene GL6 in rice (Oryza sativa L.). Chinese Science Bulletin, 58: 2992-2999.
Zhu, H., L. Gilchrist, P. Hayes, A. Kleinhofs, D. Kudrna, Z. Liu, L. Prom, B. Steffenson, T. Toojinda and H. Vivar (1999). Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor. Appl. Genet., 99: 1221-1123.