AN APPROACH FOR IMPROVING STEVIOL GLYCOSIDES AND PRODUCTIVITY OF stevia rebaudiana In vitro

Authors

  • ROBA M. ISMAIL Agric. Genetic Engineering Research Institute, Agric. Research Center, Giza
  • WAFAA, E. GRAD Sugar Crops Research Institute, Agric. Research Center, El–Sabahia, Alex.
  • MONA, I. MASSOUD Sugar Crops Research Institute, Agric. Research Center, El–Sabahia, Alex.

Abstract

Nowadays, Stevia rebaudiana leaves have attracted economic interest as a natural non-nutritive, non-toxic, high-intensity sweeteners as well as its therapeutic benefits. The aim of the study was established an efficient regeneration protocol to improve stevia's sweetness with enhancing productivity of stevia leaves as well as to evaluate the possible suitability of this technique to be applied to rapid production. The young leaves and hypocotyl of Stevia rebaudiana namely Spanti explants were cultured on a MS medium supplemented with different concentrations and combination of NAA, 2,4-D and BAP as plant growth regulators. The results showed that leaf explants obtained highest callus formation (100%) on MS medium supplemented with 0.5 mg/l NAA while callus formation from hypocotyl explants was (92.5%) on MS medium contains 1.0 mg/l 2,4-D and 2.0 mg/l NAA. Callus derived hypocotyl failed to differentiate, while callus resulting from young leaf explants were differentiated into shoots on MS medium supplemented with 2.5 mg/l BAP. MS containing 1 mg/l BAP and1 mg/l 2,4D showed best results in steviol glycoside components and high rebaudioside A (RA) (24.22 mg/g callus) yield comparing with other used media under inoculation for 18 hrs light. Also this media gave the high rate of RA over stevioside (1.33) as an indicator of leaves quality with the sweetness intensity rate under the same experimental conditions. Medium with 1.0 mg/l IBA was suitable for rooting stevia shoots. Plantlets were acclimatized by 64% in the soil contain beat moss, sand and perlite (1:1:1) under controlled chamber at 28°C for one month which transferred to the green house.
Key words: Non-nutritive, callus formation, hypocotyl explants, steviol glycoside.

References

Abd El-Motaleb M., Abd El-Hameid A. R., Elnaggar H. M. H. and Abdel-Hady M. S., (2015). Callus induction and regeneration of Stevia rebaudiana Bertoni. Int. J. ChemTech Res, 8: 868-877.

Abdul Razak N., Marimuthu M., Omar A. and Mamat M., (2014). Trust and Repurchase Intention on Online Tourism Services among Malaysian Consumers. Procedia - Social and Behavioral Sciences, 130: 577-582.

Abdullateef R., Zakaria N., Hasali N. and Osman M. (2012). Studies on pollen viability and germinability in accessions of Stevia rebaudiana-Bertoni. Int. J. of Biology, 4: 72-79.

Attaya A. S., (2017). An Efficient Protocol Of Stevia rebaudiana Regeneration For Large-Scale Production. Egypt. J. Agron., 39: 117-125.

Barriocanal L. A., Palacios M., Benitez G., Benitez S., Jimenez J. T., Jimenez N. and Rojas V., (2008). Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regulatory Toxicology and Pharmacology, 51: 37-41.

Bergs D., Burghoff B., Joehnck M., Martin G. and Schembecker G., (2012). Fast and isocratic HPLC-method for steviol glycosides analysis from Stevia rebaudiana leaves. J. Ver-braucherschutz Lebensmittel-sichelt, 7: 147-154.

Bernal J., Mendiola J. A., Ibáñez E. and Cifuentes A., (2011). Advanced analysis of nutraceuticals. J. of Pharmaceutical and Biomedical Analysis, 55: 758-774.

Blinstrubiene A., Burbulis N., Juškeviciute N., Vaitkeviˇciene N. and Žukiene R., (2020). Effect of growth regulators on Stevia rebaudiana Bertoni callus genesis and influence of auxin and proline to steviol glycosides, phenols, flavonoids accumulation and antioxidant activity in vitro. Molecules, 25: 1-15.

Bondarev N., Reshetnyak O. and Nosov A., (2001). Peculiarities of diterpenoid steviol glycoside production in in vitro cultures of Stevia rebaudiana Bertoni. Plant Sci., 161:155-163.

Bondarev N., Reshetnyak O., Bondareva T., Il’in M. and Nosov A., (2019). Impact of cultivation factors in vitro on the growth and the biosyn-thesis of steviol glycosides in Stevia rebaudiana cell cultures. Physiol. Mol. Biol. Plants, 25:1091-1096.

Bondarev N., Reshetnyak O. and Nosov A., (2003). Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci., 165:845-850

Das K., Dang R., Khanam S. and Raja-sekharan P. E., (2005). In vitro methods for production of steviosides from stevia. Int. J. of Natural Products, 21: 14-15.

Depuydt S. and Hardtke C. S., (2011). Hormone signalling crosstalk in plant growth regulation. Current biology, 21: 365-373.

Dhananjay S. and Deshpande J., (2005). Commercial cultivation of medicinal and aromatic plants, p: 296-298. New Delhi: Himalaya Publishing House.

Goettemoeller J. and Ching A., (1999). Seed germination in Stevia rebaudiana. J. Janick (ed.), Perspectives on new crops and new uses. ASHS Press, Alexandria, VA. 510-511.

Gomez K. A. and Gomez A., (1984). Statistical procedure for agricultural research Hand Book. John Wiley & Sons, New York.

Hoagland D. R. and Arnon D. I., (1950). The water-culture method for growing plants without Soil. California Agri. Exp. Station, Circular-347.

Hsing Y. I., Su W. F. and Chang W. C., (1983). Accumulation of stevioside and rebaudioside A in callus culture of Stevia rebaudiana Bertoni. Bot. Bull. Acad., 24: 115-119.

Hussain M. S., Rahman M. A., Fareed S., Ansari S., Ahmad I. Z. and Mohd S., (2012). Current approaches toward production of secondary plant metabolites. J Pharm Bioapllied Sci, 4:10-20

Kadhimi A. A., Alhasnawi A. N., Mohamad A., Yusoff W. M. W. and Zain C. R. B. C. M., (2014). Tissue culture and some of the factors affecting them and the micropropagation of strawberry. Life Sci J., 11: 484-493.

Keshvari T., Najaphy A., D. Kahrizi and Zebarjadi A., (2018). Callus induction and somatic embryogenesis in Stevia rebaudiana Bertoni as a medicinal plant. Cell Mol. Biol., 64:46-49.

Konieczny M. L., Warzecham Ż. M., Dziurka M., Zastawny O., Konieczny R., Rozpądek P. and Pistelli L., (2020). Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Applied Microbiology and Biotechnology, 104:5929-5941

Ladygin V., Bondarev N., Semenova G., Smolov A., Reshetnyak O. and Nosov A., (2008). Chloroplast ultra-structure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol Plant, 52: 9-16.

Libik-Konieczny M., Michalec-Warzecha Ż., Dziurka M., Zastawny O., Konieczny R., Rozpądek P. and Pistelli L., (2020). Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Applied Microbiology and Biotechnology, 104: 5929-5941

Luwańska A., Perz A., Mańkowska G. and Wielgus K., (2015). Application of in vitro stevia (Stevia rebaudiana Bertoni) cultures in obtaining steviol glycoside rich material. Herba Polonica, 61:50-63.

Mathur S. and Shekhawat G. S., (2013). Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta. Physiol. Plant, 35:1-9.

Metry E. A., Gad EL-Karim Gh. A., Nasr EL-Din T. M. and Madkour M. A., (2003). Micro-Propagation of Stevia (Stevia rebaudiana Betroni). Egypt. J. Genet. Cytol., 32: 33-41.

Modi A. and Kumar N., (2018). Conventional and biotechnological approaches to enhance steviol glycosides (SGs) in Stevia rebaudiana Bertoni. Biotechnol. Approaches Med. Aromatic Plants, 53-62.

Murashige T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Murmu S., A. Bhagat and Sahoo S., (2016). Plant regeneration of an anti-diabetic plant: Stevia rebaudiana l. Bertoni and evaluation of its antimicrobial activity using in vivo leaf extracts. Int. J. of Multidisci-plinary Res. and Dev., 6: 144-148.

Nazishb A., Fazal H., Shahi A. K., Roshan Z. and Nisar A., (2013). Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertonil Comptes Rendus Biologies., 336: 486-492.

Noordin, N. R. Ibrahim, N. Sajahan H., Nahar S. M. M., Nahar S. H. M. and Rashid N. R. A., (2012). "Micropropagation Of Stevia rebaudiana Bertoni through temporary immersion bioreactor system. Applied Life Sci., 60: 8.

Nosov A. M., (2011). Assessment methods and characteristics of growth rate of the higher plants cells. In: Kuznetsov VIV, Kusnetsov VV, Romanov GA (eds) Molecular genetic and biochemical methods in modern plant biology. BINOM, Laboratory of Knowledge, Moscow, p 386-402.

Pandey H., Pandey P., Pandey S. S., Singh S. and Banerjee S., (2016). Meeting the challenge of stevioside production in the hairy roots of Stevia rebaudiana by probing the underlying process. Plant Cell Tissue Organ Cult., 126:511-521.

Pazuki A., Aflaki F., Yücesan B. and Gürel S., (2019). Effects of cytokinins, gibberellic acid 3, and gibberellic acid 4/7 on in vitro growth, morphological traits, and content of steviol glycosides in Stevia rebaudiana. Plant Physiol Biochem., 137:154-161

Prakash I., Markosyan A. and Bunders C., (2014). Development of next generation stevia sweetener: Rebaudioside M. Foods, 3: 162-175.

Prakash I., Dubois G. E., John C. I. and Fosdick L. E., (2008). Development of rebiana, a natural, non-caloric sweetener. Food and Chemical Toxicology, 7: 75-82.

Ramakrishna A. and Ravishankar G. A., (2011). Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signaling & Behavior, 6: 1720-1731.

Ramírez-Mosqueda M. A. and L. Iglesias-Andreu G., (2015). Direct Organogenesis of Stevia rebaudiana Bertoni using thin cell layer (TCL) method. Sugar Tech., 18: 424-428.

Razak U. N. A. A., Ong C. B., Yu T. S. and Lau L. K., ( 2014). In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Brazilian Archives of Biology and Technology, 57: 23-28.

Roberts A. and Renwick A. G., (2008). Comparative toxicokinetics and metabolism of rebaudioside A, stevioside and steviol in rats. Food Chemical Toxicology, 46: 31-39.

Sicžlabur J., Voća S., Dobričević N., Damir J. and Tomislav B., (2013). Stevia rebaudiana Bertoni - A Review of Nutritional and Biochemical Properties of Natural Sweetener. Mladen BRNČIĆ Agriculturae Conspectus Scientificus, 78: 25-30.

Singh D. P., Meenakshi K., Prakash H. G., Rao G. P. and Solomon S., ( 2019). Phytochemical and pharmacological importance of stevia: A calorie-free natural sweetener. Sugar Tech, 21: 227-234.

Sivaram L. and Mukundan U., (2003). In vitro culture studies on Stevia rebaudiana. in vitro cellular and developmental biology. Plant, 39: 520-523.

Taak P., Tiwari S. and Koul B., (2020). Optimization of regeneration and Agrobacterium-mediated transformation of stevia (Stevia rebaudiana Bertoni): a commercially important natural sweetener plant Scientific Reports, 10:1622.

Tadhani M., and Subhash R., (2006). Preliminary studies on Stevia rebaudiana leaves: proximal composition, mineral analysis and phytochemical screening. Journal of Medical Sciences, 6: 321-326.

Tao R. and Cho S., (2020). Consumer-Based Sensory Characterization of Steviol Glycosides (Rebaudioside A, D, and M). Foods. 9: 1026.

Uddin M. S., Chodhary M. S. H., Khan M. M. M. H., Uddin M. B., Ahmad R. and Baten M. A., (2006). In vitro propagation of Stevia rebaudiana Bertoni in Bangladesh. Afr. J. Biotechnol., 5: 1238-1240.

Vanek T., Nepovím A. and Valícek P., (2001). Determination of stevioside in plant material and fruit teas. J. Food Compos. Anal, 14: 383-388.

Verma, S., Yadav K. and Singh N. N., (2011). "Optimization of the protocols for surface sterilization, regeneration and acclimatization of Stevia rebaudiana Bertoni. American Eurasian J. Agric. & Environ. Sci., 2: 221-227.

Yadav, A. K., Singh S., Dhyani D. and Ahuja P. S., (2011). A review on the improvement of stevia (Stevia rebaudiana Bertoni). Canadian Journal of Plant Science, 91: 1-27.

Yoneda Y., Shimizu H., Nakashima H., Miyasaka J. and Ohdoi K., (2018). Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor and auxin on steviol glycoside content in Stevia rebaudiana Bertoni . Sugar Tech, 20: 482-491.

Downloads

Published

2020-12-29

Issue

Section

Articles