DEVELOPMENT OF AFLP, ISSR AND RAPD MARKERS FOR HIGH YIELD-RELATED TRAITS IN JOJOBA

Authors

  • NAHLA A. AWAD Fruit Breeding Dept., Horticultural Research Institute (HRI), Agriculture Research Center (ARC).
  • S. D. IBRAHIM Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC).
  • S. S. ADAWY Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC).
  • M. A. OMAR Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC).

Abstract

Jojoba is an economic oil crop as its seeds store liquid wax (40-60% of dry weight). Due to wide variations in yield, selection of superior female plants is a big challenge to increase the yield in future populations. In this study, fifty female jojoba strains were evaluated for 13 traits representing morphology, seed characteristics and yield. Six strains representing the extremes for yield and seed weight traits were selected for molecular analysis. The selected strains were characterized using 8 AFLP, 16 ISSR and 30 RAPD primers/primer combinations. For yield, the AFLP, ISSR and RAPD produced 531, 138 and 325 total scorable bands with percentage polymorphism of 28.0, 35.5 and 35.6, respectively. While for seed weight, they generated 524, 135 and 317 total scorable bands with percentage polymorphism of 27.0, 31.1 and 34.0, respectively. The phylogenetic analysis for yield, successfully grouped the superior strains in one cluster while for seed weight, the superior strains were grouped in another cluster except for ISSR dendrogram. These results represent the first study combining different molecular markers, agronomical and morphological evaluation of 13 traits aimed at developing unique positive and negative markers which can be used to identifying superior jojoba strains in early stages of development.

References

Abramovich, R., M. Tal and M. Forti (1976). Selection and improvement of Simmondsia. In: Memorias de la II Conference Internacional Sobre la jojoba y su Aprovenchamiento. Ensenada, Baja California, Mexico, p: 89-91.

Adawy, S. S. and M. A. M. Atia (2014). A multidisciplinary molecular marker approaches to assess the genetic diversity in Egyptian date palm. J. of Biotechnology and Research, 4: 1-12.

Agarwal, M., N. Shrivastava and H. Padh (2011). Development of sex-linked AFLP markers in Simmondsia chinensis. Plant Breed., 130: 114-116.

Arya, D., S. Agarwal and S. Khan (2016). Authentication of different accessions of Simmondsia chinensis (Link) Schneider (jojoba) by DNA fingerprinting and chromatography of its oil. Ind. Crops Prod.; 94: 376-84.

Atia, M. A. M., G. H. Osman and W. H. Elmenofy (2016). Genome-wide In Silico Analysis, Characterization and Identification of Microsatellites in Spodoptera littoralis nucleopolyhedrovirus (SpliMNPV). Scientific Reports, (6:33741, doi: 10.1038/srep33741).

Benzioni, A. (1992). Flower bud dormancy: ABA concentration and survival during frost of jojoba genotype under water stress. J. Am. Soc. Hortic. Sci., 117: 976-980.

Bhardwaj, M., S. Uppal, S. Jain, P. Kharb, R. Dhillon and R. K. Jain (2010). Comparative assessment of ISSR and RAPD marker assays for genetic diversity analysis in jojoba [Simmondsia chinensis (Link) Schneider]. J. Plant Biochem. Biotechnol., 19: 255-258.

Blaszezyk, L., M. Tyrka and J. Chelkowski (2005). PstI AFLP based marker for leaf rust resistance genes in common wheat. J. Appl. Genet., 46: 357-364.

Chikara, J. and A. Kumari (1991). Evaluation of yield potential in jojoba (Simmondsia chinensis) under Indian conditions. Proc. Natl. Acad. Sci. India, 61: 481-485.

Droogenbroeck, B. V., T. Kyndt, I. Maertens, E. Romeijn-Peeters, X. Scheldeman, J. P. Romero- Motochi, P. V. Damme, P. Goetghebeur and G. Gheysen (2004). Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor. Appl. Genet., 108: 1473-1486.

FAO stat, (2013).Forti, M. A., A. Nerd and A. Benzioni (1985). Effect of genetic background on flowering pattern, growth and yield of Jojoba. In: Wisnaik J, Zabicky J (eds) Proceedings of Sixth Int Conf on Jojoba and its uses, Ben-Gurion University, Negev, Beer Sheva, Israel, p: 293-298.

Fundora, M. Z. (1998). La convention etl'utilisation desresources phylogénétiques: Résumé de la troisièmeréunionlatino-améri- cainesur la biotechnology- evégétale, REDBIO'98. Palais des conventions de la Havana, Cuba. p: 199-200.

Gentry, H. S. (1958). The natural history of jojoba, Simmondsia chinensis and its culture aspects. Econ. Bot., 12: 261-295.

Jackson, A. A., K. M. Somers and H. H. Harvey (1989). Similarity coefficients: measures for co-occurrence and association or simply measures of occurrence? Am. Nat., 133: 436-453.

Joshi, P. and Dhawan V. (2007). Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol. Plant, 5: 22-26.

Karaca, M., S. Saha, F. E. Callahan, J. N. Jenkins, J. J. Read and R. G. Percy (2004). Molecular and cytological characterization of a cytoplasmic- specific mutant in pima cotton (Gossypium barbadense L.). Euphytica, 139: 187-197.

Kremer, A., H. Caron, S. Cavers, N. Colpaert, G. Gheysen, R. Gribel, M. Lemes, A. J. Lowe, R. Margis, C. Navarro and F. Salgueiro (2005). Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 95: 274-280.

Mokhtar, M. and M. Atia (2018). SSRome: An integrated database and pipelines for exploring microsatellites in all organisms. Nucleic Acids Research, doi: 10.1093/nar/gky998.

Parker, J. S. (1990). Sex chromosomes and sexual differentiation in flowering plants. Chromosomes Today, 10: 187-198.

Parsons, B. J., H. J. Newbury, M. T. Jackson and B. V. Ford-Lloyd (1997). Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mol. Breeding, 3: 115-125.

Perez de Castro, A., J. M. Blanca, M. J. Diez and F. N. Vinals (2007). Identification of a CAPS marker tightly linked to the tomato leaf curl disease resistance gene Ty-1 in tomato. Eur. J. Plant Pathol., 117: 347-356.

Purcell, H. C. and H. C. Purcell (1988). Jojoba crop improvement through genetics. J. Am. Oil, 65: 1-13.

Ramonet, R. and A. M. Morales (1985). Seed yield variability and selection criterion of jojoba clones in Mexico. In: Wisniak J, Zabicky J (eds) Proceedings of the Sixth International Conference on Jojoba and Its Uses. Ben Gurion University of The Negev, Beer-Sheva, Israel, p. 279-285.

Ramonet-Razcon, R. (1988); In Seventh Int. Conf. on Jojoba and Its Uses: Proceedings, pp. 60. The American Oil Chemists Society.

Sharma, K., V. Agrawal, G. Sarika, R. Kumar and M. Prasad (2008). ISSR marker-assisted selection of male and female plants in a promising dioecious crop: jojoba (Simmondsia chinensis). Plant Biotechnol. Rep., 2: 239-243.

Tobares, L., M. Frati, C. Guzman and D. Maestri (2004). Agronomical and chemical traits as descriptors for discrimination and selection of jojoba (Simmondsia chinensis) clones. Ind. Crop Prod., 19: 107-

Vijayan, K., A. K. Awasthi, P. P. Srivastava and B. Saratchandra (2004). Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas, 141: 8-14.

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.

Yermanos, D. M. (1983). Performance of jojoba under cultivation between 1973-1982. In: Elias-Cesnik A (ed) Proceedings of the 5th International Conference on Jojoba and Its Uses through 1982. Univ. of Arizona, Tucson, p: 197-211.

Downloads

Published

2019-04-13

Issue

Section

Articles