GENETIC DIVERSITY ANALYSIS OF DOMESTICATED WHEAT (Triticum aestivum L.) AND WILD WHEAT (Aegilops species)

Authors

  • N. R. ABDELSALAM Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt
  • REHAM M. ABD EL-AZEEM Department of Environmental Biotechnology, Institute of Genetic Engineering and Biotechnology, University of Minufiya, Egypt

Abstract

Diversity of four domesticated wheat cultivars (Sids 1, Sakha 93, Giza 168 and Gemmeiza 10 and two wild wheat (Aegilops ventricosa and Aegilops kotchyi) were analyzed by morphological, biochemical and molecular analysis. Five morphological characteristics i.e. Heading to date (days), stem number/plant, number of spike/plant, grain number/spike and 1000 grains weight (g) were calculated to show the difference among wheat cultivars and their relatives Aegilops species. High significant variations were observed among the wild and domesticated wheat cultivars. The four domesticated wheat cultivars was earlier in heading to date compared with the wild species with range 20 to 31 days in average. Biochemical analysis for peroxidase isozymes profile exhibited three marker bands (PxA1, PxC1 and PxC3) for the wild type cultivars, also Ae. ventricosa expressed unique marker band at Px5c locus. Fourteen (10 mer) RAPD-PCR were used to detect the genetic diversity. In Total of 550 amplified fragments, 51 DNA specific markers were detected. The number of reproducible bands/primer varied between 18 for primer OPC-12 and 56 for primer OPH-11 with a total of 550 bands. The largest number of these markers was specific for wild wheat, Ae. ventricoas and Ae. kotchyi (20 and 12 markers, in respect). Furthermore, two specific large markers (1801 and 2332 bp) were observed in the two wild types. Also, two specific markers (280 and 987 bp) were reported for domesticated wheat Sakha 93. While, Giza 168 showed 5 specific marker (209, 311, 578, 873 and 2510 bp) and finally Sids 1 and Gemmeiza 10 exhibited 6 specific marker ranged from (400 to 1108 bp). High similarity between the two wild wheat types was recorded. The four domesticated wheat cultivars were clustered in one group.

References

Abdelsalam, N. R. (2010). Specific properties of hybridisation among common wheat (Triticum aestivum L.) and wild wheat species Aegilops under experimental field conditions. J. Appl. Sci. Res., 6: 2068-2073.

Asif, M., M. Rahman and Y. Zafar (2005). DNA fingerprinting studies of some wheat (Triticum aestivum L.) genotypes using random amplified polymorphic DNA (RAPD) analysis. Pakistan J. Bot., 37: 271-277.

Atienzar, F., A. Evenden, A. Jha, D. Savva and M. Depledge (2000). Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperatures. Bio/Techniques, 28: 52-5

Bariana, H. S. and R. A. Mcintosh (1993). Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 36: 476-482.

Basel, S. (2012). Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques. J. Plant Biol. Res., 1: 1-11

Bor, N. L. (1970). Gramineae, In: Rechinger, K. H. (ed.) Flora Iranica: Vol. 70. Graz, Austria: Akademische Druk-Und Verlagsanstalt. Wien.

Branlared, G. and A. Chevalet (1984). Diversity of bread wheats cultivated in France. Agronomie, 4: 933-938.

Chabane, K. and J. Valkoun (1998). Standardization of RAPD marker techniques to determine the diversity of diploid wheat: Triticum urartu. p. 155-158, in A. A. Jaradat (Ed.) Triticeae III. Science Publishers, Inc., Enfield, N. H., USA, pp 478.

Demeke, T., A. Laroche and D. A. Gaudet (1996). A DNA marker for the Bt-10 common bunt resistance gene in wheat. Genome, 39: 51-55.

Devos, K. M. and M. D. Gale. (1992). The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet., 84: 567-572.

Fufa, H., P. S. Baenziger, B. S. Beecher, I. Dweikat, R. A. Graybosch and K. M. Eskridge (2005). Comparison of phenotypic and molecular marker based classifications of hard red winter wheat cultivars. Euphytica, 145: 133-146

Goryunova, S. V., E. Z. Kochieva, N. N. Chikida and V. A. Pukhalskyi. (2004). Phylogenetic relationships and intraspecific variation of D- genome Aegilops L. as revealed by RAPD analysis. Russian J. Genetics, 40: 515-523.

Guadagnuolo, R., D. Savova-Bianchi and F. Felber (2001a). Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome, 44: 610-621.

Guadagnuolo, R., D. Savova-Bianchi, J. Keller-Senften•and F. Felber (2001b). Search for evidence of introgression of wheat (Triticum aestivum L.) traits into sea barley (Hordeum marinum s. str. Huds.) and bearded wheatgrass (Elymus caninus L.) in Central and Northern Europe, using isozymes, RAPD and microsatellite markers. Theor. Appl. Genet., 103: 191-196.

Hamada, A. A. (1996). Genetical analyses of diallel cross in bread wheat under different environmental conditions in Egypt. Ind. J. Genet. Plant Breed., 56: 34-48.

Hart, G. E. (1983). Genetic and evoluotion of multilocus isozymes in hexaploid wheat. Curr. Top. Boil. Med. Res., 10: 365-380

Hemeida, A. Alaa and Hassan Th. Mohamed (2001). Genetic diversity in five Acacia species as revealed by isozyme and RAPD markers. J. Adv. Agric. Res., 6: 777-796.

Heun, M. and B. Friebe (1990). Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 80: 242-245.

Jonathan, F. W. and F. W. Norman (1989). Isozymes in plant biology: Visualization and interpretation of plant isozymes. Chapter 1: 5-45.

Joshi, C. P. and H. T. Nguyen (1993). Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetraploid wheats. Genome, 36: 602-609.

Karagoz, A., N. Planali and T. Polat (2006). Agro-morphological characterization of some wild wheat Aegilops L. and Triticum L. species Turk J Agric For., 30: 387-398.

Khan, I. A., F. S. Awan, A. Ahmad, Y. Fu and A. Iqbal (2005). Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genetic Resources and Crop Evolution, 52: 239-244.

Kudryavtsev, A. M., S. P. Martynov, M. Broggio and V. A. Pukhalskiy (2003). Relevance of RAPD analysis for revealing phylogenetic relationships between cultivars of durum wheat Triticum durum Desf. Russian Journal of Genetics, 39: 1043-1051.

Kump, B. and B. Javornik (2002). Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) as revealed by RAPD markers. Genetic Resources and Crop Evolution, 49: 565-572.

Lanner-Herrera, C., M. Gustafeson, A. S. Filt and T. Bryngelsson (1996). Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genetic Resources and Crop Evolution, 43: 13-23.

Manifesto, M. M., A. R. Schlatter, H. E. Hopp, E. Y. Suárez and J. Dubcovsky (2001). Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci., 41: 682-690.

Maric, S., S. Bolaric, J. Marcic, I. Pejic and V. Kozumplink (2004). Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breeding, 123: 366-369.

Naghavi. M. R., M. Malaki, H. Alizadeh, M. Pirseiedi and M. Mardi (2009). An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from West of Iran using RAPD, AFLP and SSR markers. J. Agric. Sci. Techno., 11: 585-598.

Nelson, J. C., M. S. Sorrels, A. E. Van Deynze, L. U. Yun Hal, M. Atkinson, M. Bbernard and P. Leroy (1995). Molecular mapping of wheat major genes and rearrangements in homologous groups 4, 5 and 7. Genetics, 141: 721-726.

Nybom, H. and I. Bartish (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3: 93-114.

Pejic, I., P. Ajmone-Marsan, M. Morgante, V. Kozumplicl, P. Castiglioni, G. Taramino and M. Motto (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Appl. Genet., 97: 1248-1255.

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalski (1996). The comparison of RFLP, RAPD, AFLP and SSR (Microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225-238

Rharrabti, Y., D. Villegas, L. E. García del Moral, N. Aparicio. S. Elhani and C. Royo (2001). Environmental and genetic determination of protein content and grain yield in durum wheat under Mediterranean conditions. Plant Breed., 120: 381-388.

Rohlf, F. J. (2000). On the use of shape spaces to compare morphometric method. Hystrix Italian J. Mammology, (n.s.), 11: 8-24.

Sajida Bibi, M. U., A. Imtiaz, A. Khan, and M. H. Naqvi (2009). Study of genetic diversity in wheat (Triticum aestivum L.) using random amplified polymorphic DNA (RAPD) markers. Pak. J. Bot., 41: 1023-1027.

Siugh, P. K. (1994). Genetic diversity in durum wheat germplasm. Ann. Agric. Res., 15: 418-422.

Smith, O. S. and J. S. C. Smith (1992). Measurement of genetic diversity among hybrids: A comparison of isozymic, RFLP, pedigree and heterosis data. Medica, 37: 53-60.

Soliman, S. S., A. A. Bahy and M. M. Mohamed (2003). Genetic comparisons of Egyptian date palm cultivars (Phoenix dactylifera L.) by RAPD-PCR. African Journal of Biotechnology, 2: 86-86.

Tanksley, S. D. and T. J. Orton (1983). Isozymes in plant genetics and breeding (Part A). Elsevier Science Publishers B. V., Amsterdam.

Van Becelaere, G., E. L. Lumbbers, A. H. Paterson and P. W. Chee (2005). Pedigree-vs. DNA marker-based genetic similarity estimates in cotton. Crop Sci., 45: 2281-2287.

Van Slageren, M. W. (1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers 94-97, Wageningen, the Netherlands.

Vierling, R. A. and H. T. Nguyen (1992). Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor. Appl. Genet., 84: 835-838.

Williams, J. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

Zaharieva, M., J. M. Prosperi and P. Monneveux (2004). Ecological distribution and species diversity of Aegilops L. genus in Bulgaria. Biodivers. Conserv., 13: 2319-2337.

Zhang, Q. F., M. A. S. Mariif and A. Kleinhofs (1993). Comparative diversity analysis of RELPs and isozymes within and among populations of Hordeum vulgare spp. spontaneum. Genetics, 134: 909-916.

Downloads

Published

2016-01-12

Issue

Section

Articles