DETECTION OF GENETIC VARIABILITY IN Zea mays INBRED LINES USING SSRs AND SRAP MARKERS

Authors

  • REHAM M. ABD EL-AZEEM Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
  • M. H. HASHEM Department of Animal Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
  • S. H. M. ABD-EL-HALEEM Department of Agronomy, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt

Abstract

Information on germplasm variability and relationships among elite materials is fundamentally important in crop improvement. In this study, genetic variability of 11 maize genotypes, three testers [Giza 1, Single cross 10 (S.C.10) and Three ways cross 310 (T.W.C. 310)] and eight selfed inbred lines (S1.19, S1.45, S1.46, S1.50, S1.51, S1.59, S1.61 and S1.64) was tested using ten microsatellite (SSRs) loci distributed on 10 chromosomes of maize, and 50 SRAP marker combinations, regarding the means of dry weight of 100 grains. For the SSRs results, only six markers were polymorphic. A total of 24 alleles were detected among the maize genotypes. At each locus, the number of alleles varied from one to five, with an average of 2.1 alleles. On the basis of the genetic similarity coefficients, the SSRs UPGMA clustering analysis separated the genotypes into two clusters showing four groups. The most unrelated genotypes were S1.19 and S1.61 where they had 0.48 genetic similarities. The PIC ranged from 0.5 to 0.8 with an average of 0.31. The SRAP results gained 37 polymorphic primers combinations with polymorphism average of 53.4%. The most related genotypes were inbred lines S1.50 and S1.45 with genetic similarity of 0.84. The PIC ranged from 0.24 to 0.91 with an average of 0.68. The combined results of both SSRs and SRAP create a dendrogram with three groups.

References

Anderson, J. A., Sorrels, M. E. and S. D. Tanksley (1993). RFLP analysis of genomic regions associated to preharvest sprouting in wheat. Crop Sci., 33: 453-459.

Comlekcioglu, N., Simsek, O., Boncuk, M. and Y. Aka-Kacary (2010). Genetic characterization of heat tolerant tomato (Solanum lycopersicon) genotypes by SRAP and RAPD markers. Genetics and Molecular Research, 9: 2263-2274.

Dawei, X., F. Shangguo, Z. Hongyan, J. Hua, S. Bo, S. Nongnong, L. Jiangjie, L. Junjun and W. Huizhong (2010). The linkage maps of Dendrobium species based on RAPD and SRAP markers. J. Genet. Genomics, 37: 197-204.

El-Beially, I. E., C. I. A. M. Hamed, S. H. M. Abd-El-Haleem and M. S. Ahmed (2007). Using line X Tester method for estimation of combining ability effect in maize. Al-Azhar J. Agric. Sci. Sector Res., 3: 1-21.

Elçi, E. and T. Hançer (2015). Genetic analysis of maize (Zea mays L.) hybrids using Microsatellite Markers. Journal of Agricultural Sciences, 21: 192-198.

El-Taher, S. S. M. (2011). Biotechnological Studies on Maize (Zea mays L.). M. Sc. Thesis, Genetic engineering and biotechnology research institute. Minoufiya University. Egypt.

Falahati-Anbaran, M., Habashi, A. A., Esfahany, M., Mohammadi, S. A. and B. Ghareyazie (2007). Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species. J. Genet., 86: 59-63.

FAO (2015). FAOSTAT online statistical service. Rome: FAO. Available online at http://faostat3.fao. org/home/E.

Geth, J. G. I., J. A. Labate, K. R. Lamkey, M. E. Smith and S. Kresovich (2002). SSR variation in important USA maize inbred lines. Crop Sci., 42: 951-957.

Guo, D., J. Zhang, C. Liu, G. Zhang, M. Li and Q. Zhang (2012). Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers. Tree Genetics and Genomes, 8: 789-800.

Gupta, P. K., H. S. Balyan, P. C. Sharma and B. Ramesh (1996). Microsatellites in plants: A new class of molecular markers. Curr. Sci., 70: 45-54.

Heikal, Hadia A., Y. Mabrouk, O. M. Badawy, A. El-Shehawy and Effat A. Badr (2007). Fingerprinting Egyptian Gramineae species using random amplified polymorphic DNA (RAPD) and Intersimple sequence repeat (ISSR) markers. Res. J. Cell & Mol. Bio., 1: 23-30.

Heikal, Hadia A., Reham M. Abd El-Azeem and H. E. El-Wakil (2015). Molecular fingerprinting and phylogenetic relationships among three Egyptian moulokhyia genotypes (Corchorus olitorius L.) using RAPD, ISSR and SRAP markers. Indian Streams Research Journal, 5: 1-12.

Jyoti, Kumari R. N. G. and B. M. Prasanna (2005). Molecular profiling of maize (Zea mays L.) inbred lines using SSR markers. Indian J. Genet., 65: 249-252.

Kassahun, B. and B. M. Prasanna (2003). Simple sequence repeat polymorphism in quality protein maize (QPM) lines. Euphytica, 129: 337-344.

Li, G. and C. F. Quiros (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 103: 455-461.

Liu, L. J., P. D. Xiang and W. Bo (2008). Genetic relation analysis on Ramie [Boehmeria nivea (L.) Gaud] Inbred Lines by SRAP markers. Agric. Sci. in China, 7: 944-949.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res., 27: 209-220.

Qiao, L-X., Liu, H-Y., Guo, B-T., Weng, M-L, Dai, J-X. Duan, D-L. and B. Wang (2007). Molecular identification of 16 Porphyra lines using sequence-related mplified polymorphism markers. Aquatic Botany, 87: 203-208.

Robarts, D. W. H. and A. D. Wolfe. (2014). Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology. Appl. Plant Sci., 2: 1-13.

Rohlf, F. J. (1998). NTSYSpc. Numerical taxonomy and multi variate analysis system, version 2.02c. Exeter Software, New York.

Salgado, K. C. P. C., M. D. G. G. C. Vieira, E. V. R. V. Pinho, C. T. Guimaraes, R. G. V. Pinho and R. G. V. Sousa (2006). Genetic purity certificate in grains of hybrid maize using molecular markers. Revista Brasileira de Sementes, 28: 169-175.

Youssef, M., A. C. James, R. Rivera-Madrid, R. Ortiz and R. M. Escobedo-Graciamedrano (2011). Musa genetic diversity revealed by SRAP and AFLP. Molecular Biotechnology, 47: 189-199.

Zhang, Q. S., B. L. Xu, Q. Q. Yuan, H. X. Dong, X. H. Cheng and D. I. Lin (2012). Analysis of genetic diversity among Chinese Pleurotus citrinopileatus Singer cultivars using two molecular marker systems (ISSRs and SRAPs) and morphological traits. World Journal of Microbiology and Biotechnology, 28: 2237-2248.

Downloads

Published

2016-01-23

Issue

Section

Articles