GENETIC PROFILING OF FGFR2 GENE IN EGYPTIAN HEPATOCELLULAR CARCINOMA PATIENTS USING NEXT- GENERATION SEQUENCING

Authors

  • WAEL SOLIMAN
  • MOHAMED BIOMY
  • GHADA M. NASR
  • MANAL O. ELHAMSHARY
  • M. I. NASR
  • ABDELREAHMAN ABDELHALIM

Abstract

Background and objectives: The reliability of fibroblast tyrosine kinase receptor 2 (FGFR2) amplification as the biomarker for FGFR inhibitors in the hepatocellular carcinoma (HCC) is not satisfactory. There is urgent need to comprehensively characterize genetic aberrations of the FGFR2 gene. Simultaneously, we sought to determine the frequency of FGFR2 mutations as a potential tool to detect those alterations association with HCC development and the distribution of the clinical- pathological features of HCC patients with FGFR2 mutations. Patients and methods: Twenty-one patients with newly diagnosed and pathologically confirmed HCC were analyzed using a special Next generation sequencing panel (AmpliSeq). Genetic mutations of FGFR2 gene were identified and analyzed for correlations with clinical-pathological outcome. Results: Recurrent mutations were observed in FGFR2 in 15 (71.4%) patients. When compared to the genomic control, there were twenty-six somatic mutations were detected, of these 22/26 (84.6%) were single nucleotide variants (SNVs), 1/26 (3.8%) was copy number variants (CNVs), 1/26 (3.8%) was multi nucleotide variant substitutions (MVNs) and 2/26 (7.8%) were insertion and deletion (INDELs). Among SNVs, 6/22 (27.3%) were non-synonymous, 4/22 (18.2%) were synonymous, and 12/22 (54.5%) were coding sequence variants. Concerning FGFR2 gene expression data analysis, there is predominance in transcript (52.4%) more than coding transcript (47.6%). The alterations ranged from deleterious to undefinable significance to tolerable deviations. No significant differences were observed between the mutation status of FGFR2 gene, and clinicopathological features of HCC patients. Conclusion: By using bioinformatics, we concluded the roles of FGFR2 genetic variants in the diagnosis and prediction of the HCC development. Taken together, our data underscore to screen HCC patients for FGFR2 aberrations in oncology clinic.

Author Biographies

  • WAEL SOLIMAN

    Department of Molecular Diagnostic and Therapeutic, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

  • MOHAMED BIOMY

    Department of Molecular Diagnostic and Therapeutic, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

  • GHADA M. NASR

    Department of Molecular Diagnostic and Therapeutic, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

  • MANAL O. ELHAMSHARY

    Department of Molecular Diagnostic and Therapeutic, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

  • M. I. NASR

    Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

  • ABDELREAHMAN ABDELHALIM

    Department of Molecular Diagnostic and Therapeutic, Genetic Engineering & Biotechnology Research Institute, University of Sadat city

References

Abboud Y., Ismail M., Khan H., Medina- Morales E., Alsakarneh S., Jaber F., et al. (2024). Hepatocellular Carcinoma Incidence and Mortality in the USA by Sex, Age, and Race: A Nationwide Analysis of Two Decades. J. Clin. Transl Hepatol, 12(2):172-181. Doi: 10.14218/JCTH.2023.00356.

Al-Haimi M., Hamid G. A. and Ahmed A. S. (2018). Hepatocellular carcinoma in Yemen: Epidemiology and clinical presentation. World J. Pharm. Med Res. 4:248-253.

Ali A. A. K., Gamal S. E., Anwar R. et al. (2023). Assessment of clinico-epidemiological profile of Hepatocellular carcinoma in the last two decades. Egypt J. Intern. Med 35, 18.

https://doi.org/10.1186/s43162-023-00201-8

Al-Khaykanee A. M., Abdel-Rahman A. A., Essa A., Gadallah A. A., Ali B. H., Al-Aqar A. A., Badr E. A. E.,

and Shehab-Eldeen S., (2021). Genetic polymorphism of fibroblast growth factor receptor 2 and trinucleotide repeat-containing 9 influence the susceptibility to HCV-induced hepatocellular carcinoma. Clinics and research in hepatology and gastroenterology, 45(6), 101636.

https://doi.org/10.1016/j.clinre.2021.101636

Bai J., Tang R., Zhou K., Chang J., Wang H., Zhang Q., Shi J., and Sun C., (2022). An asparagine metabolism- based classification reveals the metabolic and immune heterogene- ity of hepatocellular carcinoma. BMC Medical Genomics, 15(1), 222. https://doi.org/10.1186/s12920-022-01380-z

Borde T., Nezami N., Laage Gaupp F., Savic L. J., Taddei T., Jaffe A., Strazzabosco M., Lin M., Duran R., Georgiades C., Hong K. and Chapiro J., (2022). Optimization of the BCLC Staging System for Locoregional Therapy for Hepatocellular Carcinoma by Using Quantitative Tumor Burden Imaging Biomarkers at MRI. Radiology, 304 (1): 228-237. https://doi.org/10.1148/radiol.212426

Chen C.-F., and Chang H.-C., (2023). Time trend and age-specific gender difference in the incidence of liver cancer from 2009 to 2018 in Taiwan. Adv. Dig Med 10: 135- 142. https://doi.org/10.1002/aid2.13313

Deo R. K., Chitalkar P., Malla S., KC I., Karki B. and Thapa R., (2021).

Epidemiology, Clinico- radiological Profile and Management of Hepatocellular Carcinoma in a Tertiary Care Center in Nepal. Med J. Shree Birendra Hosp 20 (1):6-11. Available from: https://www.nepjol.info/index.Php/MJSBH/article/view/32256

Elkenawy I., El-Bendary M., EL-Gilany A. and Shabana W., (2022). Characteristics of Hepatocellular Carcinoma in Egyptian Patients: A Single Center Pilot Study . Afro-Egyptian Journal of Infectious and Endemic Diseases 12(4): 402-409. doi: 10.21608 /aeji.2022.169214.1261.

Fathy Barakat E. M., AbdAlaziz K. M., Mahmoud El Tabbakh M. M. and Alden Ali M. K., (2021). Characteristics of Hepatitis B virus-induced Hepatocellular Carcinoma in Egyptian patients. QJM An Int. J. Med 114(Supplement_1). Available from: https://academic.oup.com/qjmed/article/114/Supplement_1/hcab107.006/6379183

Feroz T. and Islam M. K., (2023). A computational analysis reveals eight novel high-risk single nucleotide variants of human tumor suppressor LHPP gene. Egypt. J Med. Hum. Genet. 24, 47. https://doi.org/10.1186/s43042-023-00426-w

Ganeshan D., Szklaruk J., Kaseb A., Kattan A., Elsayes K. M., (2018). Fibrolamellar hepatocellular carcinoma: multiphasic CT features of the primary tumor on pre-therapy CT and pattern of distant metastases. Abdom Radiol 43(12):3340-3348. Available from: http://link.springer.com/10.1007/s00261-018-1657-2

Goyal L., Meric-Bernstam F., Hollebecque A., Valle J. W., Morizane C., Karasic T. B., Abrams T. A., Furuse J., Kelley R. K., Cassier P. A., Klümpen H. J., Chang H. M., Chen L. T., Tabernero J., Oh D. Y., Mahipal A., Moehler M., Mitchell E. P., Komatsu Y., Masuda K., FOENIX-CCA2 Study Investigators (2023). Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. The New England journal of medicine, 388(3), 228-239. https://doi.org/10.1056/NEJMoa2206834

Hiraoka N., Toue, S., Okamoto C., Kikuchi S., Ino Y., Yamazaki-Itoh R., Esaki M., Nara S., Kishi Y., Imaizum, A., Ono N. and Shimada K., (2019). Tissue amino acid profiles are characteristic of tumor type, malignant phenotype, and tumor progression in pancreatic tumors. Scientific reports, 9(1), 9816. https://doi.org/10.1038/s41598-019-46404-4

Kaewdech A., Sripongpun P., Assawasuwannakit S., Wetwittayakhlang P., Jandee S., Chamroonkul N. and Piratvisuth T., (2023). FAIL-T (AFP, AST, tumor size, ALT, and Tumor number): a model to predict intermediate-stage HCC patients who are not good candidates for TACE. Frontiers in medicine 10, 1077842. https://doi.org/10.3389/fmed.2023.1077842

Khan W., Ahmad W., Hashem A. M., Zakai S., Haque S., Malik, M. F. A., Harakeh S. and Haq, F., (2022). Genomic Relevance of FGFR2 on the Prognosis of HCV- Induced Hepatocellular Carcinoma Patients. Journal of clinical medicine, 11(11), 3093. https://doi.org/10.3390/jcm11113093

Kinsey E. and Lee H.M., (2024). Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers (Basel) 16(3):666. doi:10.3390/cancers16030666.

Liao J. I., Ho S. Y., Liu P. H., Hsu C. Y., Huang Y. H., Su C. W., Hou M. C. and Huo T. I., (2023). Prognostic Prediction for Patients with Hepatocellular Carcinoma and Ascites: Role of Albumin- Bilirubin (ALBI) Grade and Easy (EZ)-ALBI Grade. Cancers (Basel) 15(3):753. doi: 10.3390/cancers15030753.

Liu D., Wen G., Song C., Ji L. and Xia P., (2022). Amino acid profiles in the tissue and serum of patients with liver cancer. Open Medicine, 17(1), 1797-1802. https://doi.org/10.1515/med-2022-0589

Lopez-Lopez V., Gomez Ruiz A., Lopez- Conesa A., Brusadin R., Cayuela V., Caballero-Illanes A., Torres M. and Robles Campos R., (2020). Effects of primary hypertension treatment in the oncological outcomes of hepatocellular carcinoma. Ann. Transl Med 8(14):844. Doi: 10.21037/atm.2020.04.40.

Mahapatra S., Jonniya N.A., Koirala S., Ursal K. D. and Kar P., 2023. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J. Biomol. Struct. Dyn. 41, 13509-13533.

Mahmood M. S., Afzal M., Batool H., Saif A., Aqdas T., Ashraf N. M., and Saleem M., (2022). Screening of Pathogenic Missense Single Nucleotide Variants From LHPP Gene Associated With the Hepatocellular Carcinoma: An In silico Approach. Bioinformatics and biology insights 16, 11779322221115547. https://doi.org/10.1177/11779322221115547

Neumann O., Lehmann U., Bartels S., Pfarr N., Albrecht T., Ilm K., Christmann J., Volckmar A. L., Goldschmid H., Kirchner M., Allgäuer M., Walker M., Kreipe H., Tannapfel A., Weichert W., Schirmacher, P., Kazdal D., and Stenzinger A., (2023). First proficiency testing for NGS-based and combined NGS- and FISH- based detection of FGFR2 fusions in intrahepatic cholangiocarci- noma. The Journal of Pathology. Clinical Research, 9(2), 100-107. https://doi.org/10.1002/cjp2.308

Okeke E., Davwar P. M., Roberts L., Sartorius K., Spearman W., Malu A., and Duguru M., (2020). Epidemiology of Liver Cancer in Africa: Current and Future Trends. Seminars in liver disease, 40(2), 111-123. https://doi.org/10.1055/s-0039-3399566

Plewa S., Horała A., Dereziński P., Klupczynska A., Nowak-Markwitz E., Matysiak J. and Kokot Z. J., (2017). Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis. International Journal of Molecular Sciences, 18(12), 2727. https://doi.org/10.3390/ijms18122727

Que J., Lin C. H., Lin L. C., and Ho C. H., (2020). Challenges of BCLC stage C hepatocellular carcinoma: Results of a single-institutional experience on stereotactic body radiation therapy. Medicine 99(32), e21561. https://doi.org/10.1097/MD.0000000000021561

Ramadan A., EL Ebidy G., Elzaafarany M., Galal A., Ibrahem M. and Ali D., (2021). Characterization of hepatocellular carcinoma in Mansoura University Hospitals: A case-control study of risk factors. Medical Journal of Viral Hepatitis 6.1(1):38-45. doi: 10.21608/ mjvh.2021.211713.

Safri F., Nguyen R., Zerehpooshnesfchi S. et al. (2024). Heterogeneity of hepatocellular carcinoma: from mechanisms to clinical implications. Cancer Gene Ther. https://doi.org/10.1038/s41417-024-00764-w

Sarma M., Padma S., Pavithran P., Somasundaram V. H., and Sundaram P. S., (2021). Extrahepatic metastases of hepatocellular carcinoma on 18F FDG PET CT. Journal of the Egyptian National Cancer Institute 33(1), 36. https://doi.org/10.1186/s43046-021-00086-0

Sayiner M., Golabi P., Younossi Z. M., (2019). Disease Burden of Hepatocellular Carcinoma: A Global Perspective. Dig Dis Sci 64(4):910-917.

Shan K. S., Dalal S., Thaw Dar N. N., McLish O., Salzberg M. and Pico B. A., (2024). Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. International Journal of Molecular Sciences. 25(2):849. https://doi.org/10.3390/ijms25020849

Shen C., Jiang X., Li M. and Luo Y., (2023}. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers 15(2):533. https://doi.org/10.3390/cancers15020533

Silverman I. M., Hollebecque A., Friboulet L., Owens S., Newton R. C., Zhen H., Féliz L., Zecchetto C., Melisi D., and Burn T. C., (2021). Clinicogenomic Analysis of FGFR2-Rearranged Cholangiocarcinoma Identifies Correlates of Response and Mechanisms of Resistance to Pemigatinib. Cancer discovery, 11(2), 326-339. https://doi.org/10.1158/2159-8290.CD-20-0766

Thokerunga E., Kisembo P., FangFang H. et al. (2023). Serum Midkine for AFP-negative hepatocellular carcinoma diagnosis: a systematic review and meta-analysis. Egypt Liver Journal. 13, 25. https://doi.org/10.1186/s43066-023-00259-7

Wang H., Yang J., Zhang K., Liu J., Li Y., Su W. and Song N., (2021). Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Frontiers in pharmacology, 12, 650388. https://doi.org/10.3389/fphar.2021.650388

Wu T., Zheng X., Yang M., Zhao A., Xiang H., Chen T., Jia W. and Ji G., (2022). Serum Amino Acid Profiles Predict the Development of Hepatocellular Carcinoma in Patients with Chronic HBV Infection. ACS omega, 7(18), 15795-15808. https://doi.org/10.1021/acsomega.2c00885

Yang T. H., Chan C., Yang P. J., Huang Y. H. and Lee M. H., (2023). Genetic Susceptibility to Hepatocellular Carcinoma in Patients with Chronic Hepatitis Virus Infection. Viruses 15(2):559. doi:10.3390/ v15020559.

Ye Y., Yu B., Wang H. and Yi F., (2023). Glutamine metabolic reprogramming in hepatocellular carcinoma. Frontiers in molecular biosciences, 10, 1242059. https://doi.org/10.3389/fmolb.2023.1242 059

Zhang H., Spencer K., Burley S. K. and Zheng XF. S., (2021). Toward improving androgen receptor- targeted therapies in male- dominant hepatocellular carcinoma. Drug Discov Today. 26(6):1539–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644621000672

Zhao S., Wang M., Yang Z., Tan K., Zheng D., Du X. and Liu L., (2020). Comparison between Child-Pugh score and Albumin- Bilirubin grade in the prognosis of patients with HCC after liver resection using time-dependent ROC. Annals of translational medicine 8(8):539. https://doi.org/10.21037/atm.2020.02.85

Zingg D., Bhin J., Yemelyanenko J., Kas S. M., Rolfs F., Lutz C., Lee J. K., Klarenbeek S., Silverman I. M., Annunziato S., Chan, C. S., Piersma, S. R., Eijkman T., Badoux M., Gogola E., Siteur B., Sprengers J., de Klein B., de Goeij-de Haas R. R., Riedlinger G. M. and Jonkers J., (2022). Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature, 608(7923), 609- 617. https://doi.org/10.1038/s41586-022-05066-5

Downloads

Published

2025-01-26

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2