Two local wheat cultivars were evaluated for their callus induction and regeneration response on MS medium supplemented with different concentrations of sorbitol, (control, 10, 20, 30 g/l). Callus induction and regeneration variabilities were observed among the two tested cultivars. Giza 164 cultivar surpassed Sids 1, where Giza 164 scored 8.08 regenerated shoots/callus, while Sids 1 scored 5.49. Regarding sorbitol concentration, highest regeneration record (9.85) as number of regenerated shoots per callus was obtained at 20 g/l sorbitol, while the lowest (3.03) was recorded at 30 g/1. In both cultivars, plant regeneration was increased gradually by increasing the sorbitol concentration from zero to 20 g/l, whereas at 30 g/l regeneration in both tested cultivars decreased. Establishment of a fast, efficient and reliable in vitro regeneration system is critical step for efficient genetic transformation in wheat. Herein we report that sorbitol addition to callus and regeneration medium enhanced effectively and rapidly regeneration process in wheat cultivars under this study.

Full Text:



Aazami, M. A., M. Torabi and E. Jalili (2010). In vitro response of promising tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology, 9: 4014-4017.

Agarwal, D. K. and S. Tiwari (1995). Effect of genotypes and nutrient media on immature embryo culture of wheat. Indian Journal of Genetics and Plant Breeding, 55: 50-57.

Amiri, S. and S. K. Kazmitbar (2011). Enhancement of callus induction and regeneration efficiency from embryo culture of Datura stramonium. African Journal of Biotechnology, 10: 10101-10107.

Ball, S. T., H. Zhou and C. F. Konzak (1992). Sucrose concentration and its relationship to anther culture in wheat. Crop Science, 32: 149-154

Barakat, M. N. T. and H. Abdel-Latif (1995). Somatic embryogenesis in callus from mature and immature embryo culture of wheat. Alexandria Journal of Agriculture Research, 40: 77-95.

Bhalla, P. L. (2006). Genetic engineering of wheat - current challenges and opportunities. Trends in Biotechnology, 24: 305-311.

Blanc, G., L. Lardet, A. Martin, J. L. Jacob and M. P. Carron (2002). Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). Journal of Experimental Botany, 53: 1453-1462.

Blanc, G., N. Michaux-Ferričre, C. Teisson, L. Lardet and M. P. Carron (1999). Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell, Tissue and Organ Culture, 59: 103-112.

Chauhan, H., S. A. Desai and P. Khurana (2007). Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell, Tissue and Organ Culture, 91: 191-199.

Choi, Y. E. and W. Y. Soh (1997). Enhanced somatic single embryo formation by plasmolyzing pre-treatment from cultures of ginseng cotyledons. Plant Science. 130: 197-206.

Chu, C. C., R. D. Hill and A. I. Brule-Babel (1990). High frequency of pollen embryoid formation and plant regeneration in Triticum aestivum L. on monosaccharide containing media. Plant Science, 66: 255-62.

Duncan, D. B. (1955). Multiple range and multiple “F-test”. Biometrics, 11: 1-42.

Edyta, S., M. Szechyńska-Hebda, G. Dąbrowska and A. Goc (2008). The Role of osmotic stress during in vitro regeneration of Triticum aestivum L. and Vicia faba ssp. Minor. Zeszyty Problemowe Postepow Nauk Rolniczych, Z. 524: 221-230.

Fahmy, A. H. and O. M. El-Shihy (2006). Improvement of plant regeneration from long-term callus cultures of two Egyptian wheat cultivars. World Journal of Agricultural Sciences, 2: 274-281.

Geng, P. P., H. G. La, H. Q. Wang and E. J. C. Stevens (2008). Effect of sorbitol concentration on regeneration of embryogenic calli in upland rice varieties (Oryza sativa L.). Plant Cell, Tissue and Organ Culture, 92: 303-313.

George, E. F., M. A. Hall and G. J. D. Klerk (2008). Plant Propagation by Tissue Culture. 3rd Edition, Springer.

Gerdakaneh, M., A. A. Mozafari, A. Khalighi and A. Siosehmardah (2009). The effects of carbohydrate source and concentration on somatic embryogenesis of strawberry (Fragaria ananassa Duch.). American-Eurasian Journal Agricultural and Environmental Science, 6: 76-80.

Ghobeishavi, H., E. D. Uliaie, S. S. Alavikia and M. Valizadeh (2015). Study of factors influencing somatic embryogenesis in rice (Oryza sativa L.). International Journal of Advanced Biological and Biomedical Research, 3: 43-50.

Ghosh, Biswas G. C. and F. J. Zapata (1993). High-frequency plant regeneration from protoplasts of indica rice (Oryza sativa L.) using maltose. Journal of Plant Physiology, 141: 470-475.

Grewal, D., R. Gill and S. S. Gosal (2005). Factor enhancing induction of high frequency plant regeneration from somatic embryos of indica rice (Oryza sativa L.). Journal of Biological Sciences, 5: 697-702.

Hassan, M., Z. Ahmed, M. Munir, S. I. Malik and K. Shahzad (2009). Effect of sorbitol in callus induction and plant regeneration in wheat. African Journal of Biotechnology, 8: 6529-6535.

Huang, W. L. and L. F. Liu (2002). Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Botanical Bulletin of Academia Sinica, 43: 107-113.

Iantcheva, A., S. Slavov, E. Prinsen, M. Vlahova, H. Van Onckelen and A. Atanassov (2005). Embryo induction and regeneration from root explants of Medicago truncatula after osmotic pre-treatment. Plant Cell, Tissue and Organ Culture, 81: 37-43.

Jain, R. K., M. R. Davey, E. C. Cocking and R. Wu (1997). Carbohydrate and osmotic requirements for high frequency plant regeneration from protoplast-derived colonies of Indica and Japonica rice varieties. Journal of Experimental Botany, 48: 751-758.

Jain, R. K., G. S. Khehra, SH. Lee, N. W. Blackhall, R. Marchant, M. R. Davey, J. B. Power, E. C. Cocking and S. S. Gosal (1995). An improved procedure for plant regeneration from indica and japonica rice protoplasts. Plant Cell Reports, 14: 515-519.

Jain, R. K., S. Jain, M. R. Davery, E. C. Cocking, and R. Wu (1996). Effects of amino acids, carbohydrates, and water stress on plant regeneration from cell and protoplast cultures of indica and japonica rice varieties. In G. S. Khush (eds.), Rice Genetics III. Proc. of the Third International Rice Genetics Symposium, International Rice Research Institute, Philippines, p. 519-524.

Klenovska, S. (1973). Water relations and the dynamics of the sugar content in tobacco callus tissue cultures when using polyethylene glycol as osmotic agent. Acta Fac. Rerum. Nat. Univ. Comenianae Physiol. Plant., 7: 19-29.

Lai, K. L. and L. F. Liu (1986). Further studies on the variability of plant regeneration from young embryo callus culture in rice plants (Oryza sativa L.). Japanese J. of Crop Science, 55: 41-46.

Lai, K. L. and L. F. Liu (1988). Increased plant regeneration frequency in water stressed rice tissue culture. Japanese J. of Crop Science, 57: 553-557.

Li, S. H., Ch. S. Kuoh, Y. H. Chen, H. H. Chen and W. H. Chen (2005). Osmotic sucrose enhancement of single-cell embryogenesis and transformation efficiency in Oncidium. Plant Cell, Tissue and Organ Culture, 81: 183-192.

Li, W., C. H. Ding, Z. Hu, W. Lu and G. Q. Guo (2003). Relationship between tissue culture and agronomic traits of spring wheat. Plant Science, 164: 1079-1085.

Liu, L. F. and K. L. Lai (1991). Enhancement of regeneration in rice tissuecultures by water and salt stress. In Y. P. S. Bajaj (ed.), Biotechnology in Agriculture and Forestry, Vol. 14. Rice Springer-Verlag, Berlin, Heidelberg, p. 47-57.

Loescher, W. H., G. C. Marlow and R. A. Kennedy (1982). Sorbitol metabolism and sinksource inter-conversions in developing apple leaves. Plant Physiology, 70: 335-339.

Lou, H. and S. Kako (1995). Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Scientia Horticulturae, 64: 11-20.

Maretzki, A., M. Thom and L. G. Nickell (1972). Influence of osmotic potentials on the growth and chemical composition of sugarcane cell culture. Hawaii Plant Rec., 48: 183-199.

Mishra, V. K. and R. M. Singh (2016). Sorbitol and sucrose-induced osmotic stress on growth of wheat callus and plantlet regeneration. Current Trends in Biotechnology and Pharmacy, 10: 20-28

Monostori, T., E. Rozik, T. G. Bus and L. Tanacs (2008). The use of field grown plant material in somatic tissue cultures of spring wheat genotypes. Cereal Research Communications, 36: 1135-1138.

Munazir, M., R. Qureshi, G. M. Ali, U. Rashid, S. Noor, K. Mehmood, S. Ali and M. Arshad (2010). Primary callus induction, somatic embryogenesis and regeneration studies in selected elite wheat varieties from Pakistan. Pakistan J. Botany, 42: 3957-3965.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Mzouri, K. and M. Amssa (2002). Amelioration of somatic embryogenesis from immature embryos of wheat cultivars (Triticum aestivum L.). II. Effect of growth regulators on callogenesis. Acta Botanica Gallica, 149: 357-368.

Navarro-Alvarez, W., P. S. Baenziger, K. M. Eskridge, D. R. Shelton, V. D. Gustafson and M. Hugo (1994). Effect of sugars in wheat anther culture media. Plant Breeding, 112: 53-62.

Pua, E. C. and C. Chong (1984). Requirement for sorbitol (D-glucitol) as carbon source for in vitro propagation of Malus robusta. Canadian Journal of Botany, 62: 1545-1549.

Rashid, H., R. Abdul-Ghani and C. Zubeda (2003). Effect of media, growth regulators and genotypes on callus induction and regeneration in wheat (Triticum aestivum). Journal of Biotech., 1: 49-54.

Rashid, H., Z. Chaudhry and M. H. Khan (2011). Effect of explant plant source and acetosyringone concentration on transformation efficiency of wheat cultivars. African Journal of Biotechnology, 10: 8737-8740.

Ryschka, S., U. Ryschka and J. Schulze (1991). Anatomical studies on the development of somatic embryoids in wheat and barley explants. Biochemie und Physiologie der Pflanzen, 187: 31-41

Sah, S. K., A. Kaur and J. S. Sandhu (2014). High frequency embryogenic callus induction and whole plant regeneration in Japonica Rice cv. Kitaake. J. Rice Res., 2: 125-129.

Shahsavari, E. (2011). Contribution of sorbitol on regeneration of embryogenic calli in upland rice. Inter. Journal of Agriculture and Biology, 13: 838-840.

Slesak, H. and L. Przywara (2003). The effect of carbohydrate source on the development Brassica napus L. immature embryo in vitro. Acta Biologica Cracoviensia Series Botanica, 45: 183-190.

Snedecor, G. W. and W. G. Cochran (1969). Statistical Methods (6th Ed.). Iowa State University Press, Ames, USA.

Strickland, S. G., J. W. Nichol, C. M. Mccau and D. A. Stuart (1987). Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Science, 48: 113-121.

Swedlund, B. and R. D. Locy (1993). Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiology, 103: 1339-1346.

Thorpe, T. A. and T. Murashige (1970). Some histological underlying shoot initiation in tobacco cultures. Canadian Journal of Botany, 48: 277-285.

Varshney, A. and F. Altpeter (2001). Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Molecular Breeding, 8: 295-309.

Verma, D. C. and D. K. Dougall (1977). Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiology, 59: 81-85.

Wada, Y., N. A. Carsono, L. Tong and T. Yoshida (2009). Genetic transformation of a high molecular weight glutenin (Glu-1Dx5) to rice cv. Fatmawati. Plant Production Science, 12: 341-344.

Wang, H. L., P. D. Lee, L. F. Liu and J. C. Su (1999). Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Botanical Bulletin of Academia Sinica, 40: 219-225

Wani, S. H., P. A. Sofi, S. S. Gosal and N. B. Singh (2010). In vitro screening of rice (Oryza sativa L.) callus for drought tolerance. Communications in Biometry and Crop Science, 5: 108-115.

Weeks, J. T., O. D. Anderson and A. E. Blechl (1993). Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiology, 102: 1077-1084.

Wetherell, D. F. (1984). Enhanced adventitive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell, Tissue and Organ Culture, 3: 221-227.

Yadava, N. R. and H. S. Chawla (2001). Regeneration from immature inflorescence in wheat. Crop Improvement, 28: 1-8.

Yadava, N. R. and H. S. Chawla (2002). Role of genotypes, growth regulators and amino acids on callus induction and plant regeneration from different developmental stages of inflorescence in wheat. Indian Journal of Genetics and Plant Breeding, 62: 55-60.

Yu, G. R., J. Yin, T. C. Guo and J. Niu (2003). Selection for optimum wheat genotypes for immature embryo culture. Journal of Triticeae Crops, 23: 14-18.

Yu, Y., J. Wang, M. L. Zhu and Z. M. Wei (2008). Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breeding, 127: 249-255.

Zhou, H., Y. Zheng, and C. F. Konzak (1991). Osmotic potential for media affecting green plant percentage in wheat anther culture. Plant Cell Reports, 10: 63-66.


  • There are currently no refbacks.

Copyright (c) 2017 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.