ENHANCEMENT OF DROUGHT TOLERANCE IN RICE (Oryza sativa L.) USING OXO-PHYTODIENOATE REDUCTASE 7 (OPR7) GENE

Authors

  • RANIA M. I. ABOU ALI Nucleic Acid and Protein Structure Department, Agricultural Genetic Engineering Research Institute (AGERI)
  • WARDA A. M. HASHIM Nucleic Acid and Protein Structure Department, Agricultural Genetic Engineering Research Institute (AGERI)
  • EMAN I. IBRAHIM Genetics Department, Faculty of Agriculture, Benha University, Moshtohor, Qalyubia
  • INAS F. FAHMY Department of Microbiology, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza
  • S. E. HASSANEIN - Bioinformatics and Computer Networks Department, Agricultural Genetic Engineering Research Institute (AGERI), Egypt -College of Biotechnology, Misr University for Science and Technology (MUST)
  • A. M. K. NADA -Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Egypt -Faculty of Biotechnology, October Modern Science and Arts (MSA) University

Abstract

Drought represents one of the major challenges that face agriculture in Egypt especially rice. Therefore, development of drought tolerant rice cultivars is an essential step to overcome the drought stress and yield loss. Embryonic calli derived from mature grains of two Egyptian rice cultivars G178 and Sk106 have been transformed by Oxo-phytodienoate reductase 7 (OPR7) gene using Agrobacterium– mediated transformation system. The results of transgenic plantlets analysis showed that OPR7 gene was successfully integrated into some transgenic T0 and T1 plantlets of both rice cultivars. Moreover, OPR7 gene expression in genetically modified plants was confirmed by real time PCR. The examination of the photosynthetic pigmentation, proline content and relative water content revealed higher levels in the drought treated transgenic plants than the non transgenic plants.

References

Agrawal, O.K., N.S. Jwa, J. Shibato, O. Man, H. Iwahashi and R. Rakwal (2003). Diverse environmental cues transiently regulate OsOPRI of the "octadecanoid pathway" revealing its importance in rice defense/stress and development, Biochern. Biophys. Res. Commun., 310: 1073-1082.

Al-Momany, B. and S. Abu-Romman (2016). Homologs of old yellow enzyme in plants. Australian Journal of Crop Science 10: 584-590.

Amer, A., S. Eid and U. Aly (2016). Assessment of various factors for high efficiency transformation of Egyptian rice involving DREP2A gene. International Journal of ChemTech Research, 9: 201-213.

Aune, J. B. (2012). Conventional, organic and conservation agriculture: production and environmental impact. Lichtfouse E (ed) Agroecology and strategies for climate change, vol 8, Sustainable agriculture reviews, p 149-166.

Bakshi, S. and D. Dewan (2013). Status of transgenic crops: A review. Cloning Transgenes, 3: 119.

Basnayake, J., M. M. Ludlow, M. Cooper and R. G. Henzell, (1993). Genotypic variation of osmotic adjustment and desiccation tolerance in contrasting sorghum inbred lines. Field Crops Research 35: 51-62

Bates, L., R. P. Waldren and I. D. Teare, (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.

Central Agency for Public Mobilization and Statistics (CAPMAS) (2009). CAPMAS Egypt in figures. Central Agency for Public Mobilization and Statistics (CAPMAS). Cairo, Egypt.

Chen, P. Y., Y. T. Tsai, C. Y. Ng, M. S. B. Ku and K.Ying, (2017). Transformation and characterization of transgenic rice and Cleome spinosa plants carrying the maize phos-phoenolpyruvate carboxylase genomic DNA. Plant Cell Tiss Organ Cult., 128: 509-519.

Dar, M. I., M. Irfan, F. Rehman and F. Naushin and F. Khan, F. (2016). Proline accumulation in plants: Roles in stress tolerance and plant development. DOI: 10.1007/978-81-322-2616-1-9.

Duan, Y., C. Zhai, H. Li, J. Li, W. Mei, H. Gui, D. Ni, F. Song, L. Li, W. Zhang and J. Yang, (2012). An efficient and high-throughput protocol for Agrobacterium mediated transformation based on phospho-mannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Rep., 31: 1611-1624.

Elmoghazy, A. M. and M. M. Elshenawy, (2018). Sustainability cultivation of rice in Egypt. In: Sustainability of agricultural environment in Egypt: part 1 [Negm, A. M. and M. Abuhashim (Part 1 eds.)]. The Hand-book of environmental chemistry volume 76. [Barcelo, D. and A. G. Kostianoy (Series eds.)]. Springer International Publishing AG, Switzerland, p: 119-144.

El Nagar, M. M., (2013). Genetic Engineering for Increasing Salinity Tolerance in Tomato. Australian Journal of Basic and Applied Sciences, 7: 433-440

El-Ramady, H. R., S. M. El-Marsafawy and L. N. Lewis (2013). Sustainable Agriculture and Climate Changes in Egypt. Sustainable Agriculture Reviews. Lichtfouse, E. (ED.) 371:49.

El-Shawaf, I., A. W. Hasan, M. Bekhit, E. S. Hasanein, T. Salim and H. Bauwe, (2011). Callus induction and plant regeneration of five Egyptian rice genotypes as affected by medium constituents. Arab J. Biotech., 14: 279-290.

Farooq, M.; M. Hussain, A. Wahid and K. H. M. Siddique (2012). Drought stress in plants: an overview. In: Aroca R, ed. Plant responses to drought stress. Berlin, Heidelberg, Germany: Springer, 1-33.

Handmer, J., Y. Honda, Z. W. Kundzewicz, N. Arnell, G. Benito, J. Hatfield, I. F. Mohamed, P. Peduzzi, S. Wu, B. G. Sherstyukov,K. Takahashi, Z. Yan, A. Abdulla, L. M. Bouwer, J. Campbell, M. Hattermann, R. Heilmayr, A. Keating, M. Ladds, K. J. Mach, M. D. Mastrandrea, R. Mechler, C. Nobre, A. Sanghi, J. Screen, J. Smith, A. Velegrakis, W. Vergara, A. M. Waite, J. R. Westrich, J. Whittaker, Y. Yunhe and H. Yamano, (2012). Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, et al., (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, p. 231-290.

Hassanein, R. A., F. M. Bassuony, D. M. Baraka and R. R. Khalil, (2009). Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. I-Changes in growth, some relevant metabolic activities and oxidative defense systems. Res. J. Agric. & Biol. Sci., 5:72-81.

Hefena, A. G., M. S. Sultan, M. A. Abdel-Moneam, S. A. Hammoud, C. Barutçular and A. EL-Sabagh, (2016). Assessment of Genetic Variability and Correlation Coefficient to Improve Some Agronomic Traits in Rice. Journal of Experimental Agriculture International 14: 1-8.

Hussain, Z., S. Ali, Z. Hayat, M. A. Zia, A. Iqbal and G. M. Ali (2014). Agrobacterium mediated transformation of DREB1A gene for improved drought tolerance in rice cultivars (Oryza sativa L.). AJCS, 8:1114-1123.

Jaleel, C. A., P. Manivannan, A. Wahid, M. Farooq, R. Somasundaram and R. Panneerselvam, (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 11: 100-105.

Keyvan, S., (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences, 8: 1051-1060.

Li, W. Y., F. Zhou, B. Liu, D. Feng, Y. M. He, K. B. Qi, H. B. Wang and J. F.Wang, (2011). Comparative characterization, expression pattern and function analysis of the 12-oxo-phytodienoic acid reductase gene family in rice. Plant Cell Rep., 30:981-995.

Livak, K. J. and T. D. Schmittgen, (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408.

McCouch, S., (2013). Feeding the future. Nature 499:23-24.

Moghaieb, R. E. A., S. S. Youssef, E. H. K. Mohammed, E. H. K. and A. E. Draz, (2009). Genotype dependent somatic embryogenesis from Egyptian rice mature zygotic embryos. Aust. J. Basic Appl. Sci., 3:2570-2580.

Moghaieb, R. E. A., (2010). Transgenic rice plants expressing cry1Ia5 gene are resistant to stem borer (Chilo agamemnon). GM Crops, 1 : 288-293.

Mostafiz, S. B. and A. Wagiran, (2018). Efficient callus induction and regeneration in selected indica rice. Agronomy, 8: 77-95.

Mukamuhirwa, A., (2015). Drought responses of rice (Oryza sativa) under various drought severity levels and durations in biotron and field. Introductory essay at the Faculty of Landscape Architecture, Horticulture and Crop Production Science 1. Swedish University of Agricultural Sciences Alnarp. Nishimura, N., I. Aichi and M. Matsuoka (2006). A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols, 1: 2796-

Peña-Gallardo, M., S. M. Vicente-Serrano, S. Beguería-Portugués and F. Domínguez-Castro, (2018). The impacts of drought in agricultural productivity. An analysis at different scales for the two major rainfed crops in Spain. EGU General Assembly. 20:9146.

Serraj, R., K. L. McNally, I. Slamet-Loedin, A. Kohli, S. M. Haefele, G. Atlin and A. Kumar, (2011). Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy. Plant Production Science, 14: 1-14.

Silalertruksa T., S. H. Gheewala, R. Mungkung, P. Nilsalab, N. Lecksiwilai and W. Sawaengsak (2017). Implications of Water Use and Water Scarcity Footprint for Sustainable Rice Cultivation Thapat. Sustainability 9: 2283.

Tani, T., H. Sobajima, K. Okada, T. Chujo, S. Arimura, N. Tsutsumi, M. Nishimura, H. Seto, H. Nojiri and H. Yamane, (2008). Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 227: 517-526.

Teixeira da Silva, J. A. and S. Fukai (2001). The impact of carbenicillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J. Appl. Hort., 3:3-12.

Todaka, D., K. Shinozaki and K. Yamaguchi-Shinozaki, (2015). Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci., 6: 84.

Verulkar, S. B., N. P. Mandal, J. L. Dwivedi, B. N Singh, P. K. Sinha, R. N. Mahato, P. Dongre, O. N. Singh, L. K. Bose, P. Swain, S.

Robin, R. Chandrababu, S. Senthil, A. Jain, H. E. Shashidhar, S. Hittamani, C. Vera Cruz, T. Paris, A. Raman, S. Haefele, R. Serraj, G. N. Atlin, A. Kumar and B. N. Singh (2010). Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India. Field Crop Res 117: 197-208.

Wassmann, R., S. V. K. S. Jagadish, S. Heuer, A. Ismail, E. Redona and R. Serraj, et al., (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59-121.

Yoshida, S., D. A. Forno, J. H. Cock and K. A. Gomez, K. A., (1976). Laboratory Manual for Physiological Studies of Rice. IRRI, Las Banos, Laguna. pp.83.

Youssef, S. S., R. E. Moghaieb, A. A. El-Kazzaz, M. R. Rady, A. M. Amer and M. M. Saker, (2011). An efficient and re-producible protocol for regenerating transgenic rice plants. Arab J. Biotech., 14 : 269-278.

Downloads

Published

2020-07-08

Issue

Section

Articles

Most read articles by the same author(s)