The Use of Simple Sequence Repeats for Detecting Genetic Diversity in Egyptian and Exotic Bread Wheat

Authors

  • M. Z. MATTAR Botany Department, Faculty of Science, Menoufia University, Egypt.

Abstract

The cultivated wheat (Triticum aesti- vum L.) belongs to tribe Triticeae of the family Poaceae. It is the first impor- tant cereal crop as the main source of hu- man diet (FAO, 1985). Approximately, ninety five percent of wheat's grown today are hexaploid wheat which comprising three genomes A, B and D (Harti and Jones, 2001). Genetic diversity is consid- ered one of the most important factors for crop improvement. Modern breeding process has dramatically narrowed the variation of important traits, especially among common wheat cultivars which are widely used in breeding programmes. It is important to investigate genetic diversity of wheat to assess its usefulness for breed- ing programmes. However, there are in- herent problems with the use of data on morphological traits, the latter being lim- ited in number and greatly influenced by the environment and by genotype X envi- ronment interactions. Molecular markers are a promising tool for evaluating genetic diversity among plant materials, as the phenotype and physiological markers are not accurate enough and often depend on environmental conditions. Many different DNA marker systems were used for diversity analysis. As far as the ability of polymorphism detection is concerned, the most useful markers were random ampli- fied polymorphic (RAPDs) (Kuczynska et al., 2001; Mukhtar et al., 2002; Weber et al., 2005; Irzykowska et al., 2005) and simple sequence repeats (SSRs), also termed microsatellites, have been pro- posed as one of the most suitable markers for the assessment of genetic variation and diversity among wheat varieties, because they are multiallelic, chromosome-specific and distributed evenly throughout the plant genome (Prasad et al., 2000; Stachel et al., 2000; Huang et al., 2002; Roder et al., 2002, Landjeva et al., 2006; Chabane et al., 2007; Salem et al., 2008). Microsa- tellites were also successfully used to identify quantitative trait loci (QTLs) (Parker et al. 1998), to tag resistance genes (Peng et al., 1999; Borner et al., 2000) and to detect polymorphisms be- tween the accessions of diploid and tetraploid wheat (Hammer et al., 2000; Pestsova et al., 2000; Fahima et al., 2002).

References

Borner, A., S. Chebotar and V. Korzun (2000). Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenance. Theor. Appl. Genet., 100: 494-497.

Botstein, D., R. L. White, M. Skolnick and R. W. Davis (1980). Construc- tion of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet., 32: 413-331.

Chabane, K., O. Abdalla, H. Sayed and J. Valkoun (2007). Assessment of EST-microsatellites markers for discrimination and genetic diver- sity in bread and durum wheat landraces from Afghanistan. Genet. Resour. Crop. Evol., 54: 1073-1080.

Fahima, T., M. S. Roder, K. Wendehake, V. M. Kirzhner, E. Nevo (2002). Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Is- rael. Theor. Appl. Genet., 104: 17-29.

FAO (1985). FAO production year book. 37: 107-122.

Feldman, M. (2001). Origin of cultivated wheat. In: Bonjean, A. P., Angus WJ (eds) The World wheat book. A history of wheat breeding. Inter- cept, Paris, p 3-56.

Hammer, K., A. A. Filatenko and V. Kor- zun (2000). Microsatellite markers: a new tool for distinguishing dip- loid wheat species. Genet. Res. Crop. Evol., 47: 497-505.

Harti, D. L. and E. W. Jones (2001). Ge- nome evaluation in the grass fam- ily. In, genetics and analysis of genes and genomes. Fifth edition, Jones and Bartlett publishers/ Sud- bury, Massachusetts, USA.

Huang, Q., A. Borner, S. Roder and W. Ganal (2002). Assessing genetic diversity of wheat (Triticum aesti- vum L.) germplasm using microsa- tellite markers. Theor. Appl. Genet., 105: 699-707.

Huang, X. Q., F. J. Zeller, S. L. K. Hsam, G. Wenzel and V. Mohler (2000). Chromosomal location of AFLP markers in common wheat (Triti- cum aestivum L.) utilizing nulli- tetrasomic stocks. Genome, 43: 298-305.

Irzykowska, L., E. Zoltanska and J. Bo- cianowski (2005). Use of molecu- lar and conventional techniques to identify and analyze genetic vari- ability of Rhizoctonia spp. isolates. Acta Agrobot., 59: 19-32.

Khlestkina, E. K., M. S. Roder, T. T. Efremova, A. Borner and V. K. Shumny (2004). The genetic diver- sity of old and modern Siberian va- rieties of common spring wheat as determined by microsatellite mark- ers. Plant Breed., 123: 122-127.

Kuczynska, A., P. Milczarski, M. Surma, P. Masojc and T. Adamsk (2001). Genetic diversity among cultivars of spring barley revealed by ran- dom amplified polymorphic DNA (RAPD). J, Appl. Genet., 42: 43-48.

Landjeva, S., V. Korzun and G. Ganeva (2006). Evaluation of genetic di- versity among Bulgarian winter wheat (Triticum aestivum L.) varie- ties during the period 1925–2003 using microsatellites. Genet. Res. Crop. Evol., 53: 1605-1614.

Mukhtar, M. S., M. Rahman and Y. Zafar (2002). Assessment of genetic diversity among wheat (Triticum aes- tivum L.) cultivars from a range of locations across Pakistan using random amplified polymorphic DNA (RAPD) analysis. Euphytica, 128: 417-425.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 70: 3321-3323.

Nei, M. and W. H. Li (1979). Mathemati- cal model for studying genetic variation in terms of endonucle- ases. Proc. Natl. Acad. Sci. USA, 76: 5269-5273.

Parker, G. D., K. J. Chalmers, A. J. Rath- jen and P. Langride (1998). Map- ping loci associated with flour col- our in wheat (Triticum aestivum L.). Theor. Appl. Genet., 97: 238-245.

Peng, J. H., T. Fahima, M. S. Roder, Y. C. Li, A. Dahan, A. Grama, Y. I. Ronin, A. B. Korol and E. Nevo (1999). Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover in- terference on chromosome 1B. Theor. Appl. Genet., 98: 862-872.

Pestsova, E., V. Korzun, N. P. Goncharov, K. Hammer, M. W. Ganal and M. S. Roder (2000). Microsatellite

analysis of Aegilops tauschii germplasm. Theor. Appl. Genet., 101: 100-106.

Prasad, M., R. K. Varshney, J. K. Roy, H. S. Balayan, P. K. Gupta (2000). The use of microsatellites for de- tecting DNA polymorphism, geno- type identification and genetic di- versity in wheat. Theor. Appl. Genet., 100: 584-592.

Roder, M. S., V. Korzun, K. Wendehake, J. Plaschke, M. H. Tixier, P. Leroy and M. W. Ganal (1998). A mi- crosatellite map of wheat. Genet- ics, 149: 2007-2023

Roder, M. S., K. Wendehake, V. Korzun, G. Bredemeijer, D. Laborie, L. Bertrand, P. Isaac, S. Rendell, J. Jackson, R. J. Cooke, B. Vosman and M. W. Ganal (2002). Construc- tion and analysis of a microsatel- lite-based database of European wheat varieties. Theor. Appl. Genet., 106: 67-73.

Rolf, F. J. (2002). NTSYS-pc. Numerical Taxonomy and Multivariate Analy- sis System, Version 2.1, Applied Biostatistics, New York.

Roussel, V., L. Leisova, F. Exbrayat, Z. Stehno and F. Balfourier (2005). SSR allelic diversity changes in

European bread wheat varie- ties released from 1840 to 2000. Theor. Appl. Genet., 111: 162-170.

Salem, K. F. M., A. M. El-Zanaty and R. M. Esmail (2008). Assessing wheat (Triticum aestivum L.) genetic di- versity using morphological char- acters and microsatallite markers. World J. Agri. Sci., 4: 538-544.

Stachel, M., T. Lelly, H. Grausgruber and J. Vollmann (2000). Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet., 100: 242–248.

Weber, Z., L. Irzykowska and J. Bo- cianowski (2005). Analysis of my- celial growth rates and RAPD-PCR profiles in a population of Gaeu- mannomyces graminis var. tritici originating from wheat plants grown from fungicide treated seed. J. Phytopathol., 153: 318-324.

Downloads

Published

2016-01-08

Issue

Section

Articles