GENETIC DIVERSITY IN OLD AND MODERN EGYPTIAN BREAD WHEAT (Triticum aestivum L.) VARIETIES REVEALED BY SIMPLE SEQUENCE REPEATS
Abstract
The objective of the present study was to assess genetic diversity within old and modern bread wheat varieties cultivated in Egypt and to find out whether old Egyptian varieties could be a potential source for genetic diversity in modern wheat breeding in Egypt. A set of 33 varieties was analyzed using 17 SSR markers, determining 17 loci located on 15 different chromosomes. A total of 66 and 82 alleles were detected with an average of 3.88 and 4.82 alleles in both old and modern wheat varieties, respectively. The average genetic diversity value was 0.617 in old varieties while in modern varieties it was 0.652. Compared to old varieties, the modern varieties showed the highest number of alleles for the three wheat genomes 30, 28 and 24 (genome B, A & D), respectively. Regarding the average genetic richness, the modern varieties showed higher number of alleles/locus 5, 4.8 and 4.67 (genome B, A & D), respectively than that in the old varieties. As for genetic diversity, the modern varieties showed higher genetic diversity 0.703, 0.635 and 0.617 (genome B, A & D), respectively. Indeed, the B genome showed the highest diversity. In generally, homologous group 7 possessed the highest average of allelic numbers, while group 2 was the lowest for both modern and old varieties. Cluster analysis was conducted based on SSRs data to group the bread wheat varieties and to construct a dendrogram. Two groups can be distinguished by truncating the dendrogram at GS value of 0.25.References
Akfirat, F. S. and A. A. Uncuoglu (2013). Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochem. Genet., 51: 223-229.
Alamerew, S., S. Chebotar, X. Huang, M. S. Röder and A. Börner (2004). Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Gen. Res. Crop Evol., 51: 559-564.
Anderson, J. A., G. A. Churchill, J. E. Antrique, S. D. Tanksley and M. E. Sorrels (1993). Optimizing parental selection for genetic linkage maps. Genome, 36: 181-188.
Ben Amer, I. M., A. Börner and M. S. Röder (2001). Detection of genetic diversity in Libyan wheat genotypes using wheat microsatellite markers. Gen. Res. Crop Evol., 48: 579-585.
Börner, A., E. Schumann, A. Fürste, H. Cöster, B. Leithold, M. S. Röder and W. E. Weber (2002). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) Theor. Appl. Genet., 105: 921-936.
Botstein, D., R. L. White, M. Skolnick and R. W. Davis (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet., 32: 413-331.
Chebotar, S. V., M. S. Röder, A. Börner and Yu. M. Sivolap (2002). Characterization of Ukrainian bread wheat (Triticum aestivum L.) germplasm by using microsatellite markers. In: Proc. Int. Symp. Biotechnology Approaches for Exploitation and Preservation of Plant Resources, Yalta, Ukraine, 8-11.
Colomba, M. S. and A. Gregorini (2011). Genetic diversity analysis of the durum wheat Graziella Ra, Triticum turgidum L. subsp. durum (Desf.) Husn. (Poales, Poaceae). Biodiversity Journal, 2: 73-84.
Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26: 297-302.
Fahima, T. M. S. Röder, A. Grama and E. Nevo (1998). Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet., 96: 187-195.
Feldman, M. (2001). Origin of cultivated wheat. In: Bonjean, A. P. and W. J. Angus. (eds). The World wheat book. A history of wheat breeding. Intercept, Paris, p 3-56.
Gupta, P. K. and R. K. Varshney (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113: 163-185.
Huang, X. Q., A. Borner, M. S. Röder and M. W. Ganal (2002). Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet., 105: 699-707.
Khlestkina, E. K., M. S. Röder, T. T. Efremova, A. Borner and V. K. Shumny (2004). The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed., 123: 122-127.
Li, H. Q., H. G. Zhang, B. L. Liu, D. C. Liu and B. Zhang (2012). Assessing genetic diversity and its changes of bread wheat in Qinghai Province, China, using agronomic traits and microsatellite markers. Biological Agric. & Hort., 28: 120-128.
Morgounov, A., V. A. Zykin, G. A. Sereda and R. A. Urazaliev (2001). Siberian and North Kazakhstan wheat pool. In: A. P. Bonjean, and W. J. Angus (eds), The World Wheat Book. A History of Wheat Breeding, 755-772. Lavoisier Publishing, London, Paris, New York.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci., USA, 70: 3321-3323.
Peng, J., Y. Ronin, T. Fahima, M. S. Roder, Y. Li, A. Nevo E and A. Korol (2003). Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Nat. Acad. Sci., USA, 100: 147-159.
Plaschke, J., M. W. Ganal and M. S. Röder (1995). Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet., 91: 1001-1007.
Prasad, M., R. K. Varshney, A. Kumar, H. S. Balyan, P. C. Sharma, K. J. Edwards, H. Singh, H. S. Dhaliwal, J. K. Roy and P. K. Gupta (1999). A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor. Appl. Genet., 99: 341-345.
Röder, M. S., V. Korzun, K. Wendehake, J. Plaschke, M. H. Tixier, P. Leroy and M. W. Ganal (1998). A microsatellite map of wheat. Genetics, 149: 2007-2023.
Rölf, F. J. (2002). NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.1, Applied Biostatistics, New York.
Roussel, V., L. Leisova, F. Exbrayat, Z. Stehno and F. Balfourier (2005). SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor. Appl. Genet., 111: 162-170.
Roy, J. K., M. Prasad, R. K. Varshney, H. S. Balyan, T. K. Blake, H. S. Dhaliwal, H. Singh, K. J. Edwards and P. K. Gupta (1999). Identification of a microsatellite on chromosome 6B and a STS on 7D of bread wheat showing association with preharvest sprouting tolerance. Theor. Appl. Genet., 99: 336-340
Salem, K. F. M., A. M. El-Zanaty and R. M. Esmail (2008). Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World J. Agri. Sci., 5: 538-544.
Stachel, M., T. Lelly, H. Grausgruber and J. Vollmann (2000). Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet., 100: 242-248.
Sardouie-Nasab, S., Gh. Mohammadi-Nejad and B. Nakhoda (2013). Assessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance. J. Plant Molecular Breeding, 1: 28-39.
Varshney, R. K., S. N. Nayak, G. D. May and S. A Jackson (2005). Nextgeneration sequence technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 27: 522-530.
Varshney, R. K., T. Mahender, R. K. Aggrawal and A. Borner (2007). Genic molecular markers in plants: development and applications. In: Varshney R. K. and R. Tuberosa. (eds) Genomics assisted crop improvement, vol I: genomics approaches and platforms. Springer, Dordrecht, p 13-30.