In vitro ASSESSMENT OF Trichoderma asperellum ISOLATED FROM PLANT RHIZOSPHERE AND EVALUATION OF THEIR POTEN-TIAL ACTIVITY AGAINST SOME PATHOGENIC FUNGI

Authors

  • G. M. HASSAN Department of genetics, Faculty of Agriculture, Fayoum University, 63514 Egypt
  • NADA F. HEMEDA Department of genetics, Faculty of Agriculture, Fayoum University, 63514 Egypt

Abstract

Hydrolytic enzymes producing Trichoderma species have long been recognized as an agent for controlling plant diseases caused by various phytopathogenic fungi. This study aims to isolate and characterize of new bio fungicides from Egyptian soils and assess of their antagonistic activity against some pathogenic fungi (Fusarium semitectum and Alternaria alternata). Four isolates of the Trichoderma asperellum were isolated from rhizosphere soil of different host plants collected from Fayoum governorate, Egypt. The isolates were characterized according to morphological characterization, microscopic observations and confirmed by sequencing of the ITS region of 18S rRNA. Trichoderma asperellum isolates were evaluated for their potential to antagonize the plant pathogenic fungi (F. semitectum and A. alternata) in vitro using the dual culture technique. Four out of twenty Trichoderma isolates (20%) were identified as T. asperellum based on morphological characteristics and confirmed by sequencing of ITS region of 18SrRNA. The four selected T. asperellum isolates (Tas1, Tas2, Tas3 and Tas4) were screened for their ability to produce chitinase on solid agar medium using bromocresol purple for developing the clear zone around colonies, and characterized due to its antagonistic effect against mycelial growth of pathogenic fungi. These results indicate that molecular systematic studies based on the sequence of ITS region are important for confirmation of phenotypic characterization of Trichoderma isolates. To the best of our knowledge, there is no information on the occurrence of T. asperellum in Egypt and this is the first report of the occurrence and isolation of T. asperellum from Egyptian soils.

References

Agrawal, T. and A. S. Kotasthane (2012). Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springer Plus, 1: 73-82.

Anees, M., A. Tronsmo, V. Edel-Hermann, G. L. Hjeljord, C. Heraud and C. Steinberg (2010). Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol., 114: 691-701.

Benitez, T., M. A. Rincon, M. C. Limon and C. A. Codon (2004). Biocontrol mechanisms of Trichoderma strains. Int. Microbial., 7: 249-260.

Consolo, V. F., C. I. Monaco, C. A. Cordo and G. L. Salerno (2012). Characterization of novel Trichoderma spp. isolates as a search for effective bio controllers of fungal diseases of economically important crops in Argentina. World J. Microbiol. Biotechnol., 28: 1389-1398.

Deacon, J. W. and L. A. Berry (1992). Modes of actions of mycoparasites in relation to biocontrol of soilborne plant pathogens. In: Biological control of plant diseases, eds. by E. C. Tjamos, G. C. Papavizas and R. J. Cook, p. 157-167. Plenum Press, New York.

Druzhinina, I. S., V. Seidl-Seiboth, A. Herrera-Estrella, B. A. Horwitz, C. M. Kenerley and E. Monte (2011). Trichoderma the genomics of opportunistic success. Nat. Rev. Microbiol., 9: 749-759.

Harman, G. E., C. R. Howell, A. Viterbo, I. Chet and M. Lorito (2004). Trichoderma species- opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2: 43-56.

Hassan, G. M., Z. A. El-Feky, N. F. Hemad and M. A. Sayed (2015). Isolation and molecular characterization of Egyptian Trichoderma and assessment of their antagonistic potential against Rhizoctonia. J. Microb. Biotechnol. and Food Sci., 4: 495-502.

Jaklitsch, W. M. (2009). European species of Hypocrea Part I. The green spored species. Stud. Mycol., 63: 1-91.

Kim, K. Y., G. J. Lee, M. G. Ha, T. H. Lee and J. D. Lee (2000). Intrageneric relationships of Trichoderma based on internal transcribed spacers and 5.8S rRNA nucleotide sequences. Mycobiol., 28: 11-16.

Kucuk, C. and M. Kivanc (2003). Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turk. J. Biol., 27: 247-253.

Kuhls, K., E. Lieckfeldt, G. J. Samuels, T. Borner, W. Meyer C. P. Kubicek (1997). Revision of Trichoderma sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia., 89: 442-460.

Lieckfeldt, E., K. Kuhls and S. Muthumeenakshi (2002). Molecular taxonomy of Trichoderma and Gliocladium and their teleomorphs, In: Trichoderma and Gliocladium: basic biology, taxonomy and genetics, eds. by C. P. Kubicek, and G. E. Harman, p. 35-53. Taylor & Francis Ltd.

Mbarga, J. B., G. M. Ten Hoopen, J. Kuate, A. Adiobo, E. L. Ngonkeu and Z. Ambang (2012). Trichoderma asperellum: A potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Protect., 36: 18-22.

Mokhtar, H. and D. Aid (2013). Contribution in isolation and identification of some pathogenic fungi from wheat seeds, and evaluation of antagonistic capability of Trichoderma harzianum against those isolated fungi in vitro. Agric. Biol. J. N. Am., 4: 145-154.

Ommati, F. and M. Zaker (2012). Evaluation of some Trichoderma isolates for biological control of potato wilt disease (Fusarium oxysporum) under lab. and greenhouse conditions. Crop protect., 1: 279-286.

Ospina-Giraldo, M. D., D. J. Royse, M. R. Thon, X. Chen and C. P. Romaine (1998). Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia, 90: 76-81.

Petrescu, E., T. Sesan and M. Oprea (2012). In vitro evaluation of the relationships between some fungal pathogens of black current crops and some saprophytic fungi. Scientific Bulletin, 16: 175-178.

Poddar, R. K., D. V. Singh and S. C. Dubey (2004). Integrated application of Trichoderma harzianum mutants and carbendazim to manage chickpea wilt (Fusarium oxysporumf. sp. ciceri). Indian J. Agric. Sci., 74: 346-348.

Rifai, M. (1969). A revision of genus Trichoderma. Mycological Papers, 116: 1-56.

Rojo, F. G., M. M. Reynoso, M. F. Sofia, N. Chulze and A. M. Torres (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protect., 26: 549-555.

Samuels, G. J., P. Chaverr, D. F. Farr and E. B. McCray (2002). Trichoderma Online. Systematic Mycology and Microbiology Laboratory, ARS, USDA; http://nt.ars-grin.gov/ taxadescriptions/keys/TrichodermaIndex.cfm.

Samuels, G. J., P. Chaverri, D. F. Farr and E. B. McCray (2004). Trichoderma Online, Systematic Botany & Mycology Laboratory, ARS, USDA. From http://nt.ars-grin.gov/ taxadescriptions/ keys/Trichoderma Index.cfm.

Schoch, C. L., K. A. Seifert, S. Huhndorf, V. Robert, J. L. Spouge and C. A. Levesque (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi, Proceeding of the National Academy of Sciences of the USA, 6241-6246.

Segarra, G., E. Casanova, M. Aviles and I. Trillas (2010). Trichoderma apserellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb. Ecol., 59: 141-149.

Shahid, M., M. Srivastaval, V. Kumar, A. Singh, A. Sharma and S. Pandey (2014). Phylogenetic diversity analysis of Trichoderma species based on internal transcribed spacer (ITS) marker. Afr. J. Biotechnol., 13: 449-455.

Shalini, S. and A. S. Kotasthane (2007). Parasitism of Rhizoctonia Solani by strains of Trichoderma spp. EJEAF. Chem., 6: 2272-2281.

Sharma, K. K. and U. S. Singh (2014). Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. J. Appl. and Nat. Sci., 6: 451-456.

Singh, A., M. Shahid and M. F. Srivastava (2014). Identification of Trichoderma atroviride TAU8/7445 strain by sequencing of 18S rRNA gene. Indian J. Agric. Biochem., 27: 85-87.

Tamura, K., D. Peterson, N. Petreson, G. Stechsr, M. Nei and S. Kumar (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.

Thompson, J. D., D. J. Higgins and T. J. Gibson (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positive specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.

Tondje, P. R., D. P. Roberts, M. C. Bon, T. Widmer, G. J. Samuels and A. Ismaiel (2007). Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol. Control., 43: 202-212.

White, T. J., T. Bruns, S. Lee and J. Taylor (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protocols: A Guide to Methods and Applications, 315-322.

Widyastuti, S. M., H. Sumardi and D. Yuniarti (2003). Biological control of Scleorotium rolfsii damping-off of tropical pine (Pinus merkusii) with three isolates of Trichoderma spp. Online J. Biol. Sci., 3: 95-102.

Wirth, S. J. and G. A. Wolf (1990). Dye-labelled substrates for the assay and detection of chitinase and lysozymes activity. J. Microbiol. Meth., 12: 197-205.

Zhang, R. and D. Wang (2012). Trichoderma spp. from rhizosphere soil and their antagonistic against Fusarium sambucinum. Afr. J. Biotechnol., 18: 4180-4186

Downloads

Published

2016-07-14

Issue

Section

Articles