GENETIC VARIATION IN EGYPTIAN WHITE LUPIN (Lupinus albus L.) GENOTYPES BASED ON COMBINED DATA OF ISSR AND FLUORESCENCE-BASED AFLP MARKERS

Authors

  • NAHLA A. EL-SHERIF Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
  • AMINA A. MOHAMED Genomics facility, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
  • M. E. SAAD Genomics facility, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
  • HODA BARAKAT Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
  • SARA ALY Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Abstract

Genetic relationships among eighteen white lupin (Lupinus albus L.) genotypes, including 12 Egyptian landraces were studied using ISSR and AFLP markers. Twelve ISSR and four AFLP primers/primer combinations were used to assay the polymorphism levels among the lupin accessions. These molecular markers revealed high levels of polymorphism, 94.6% for AFLP and 59.5 % for ISSR. A total of 180 AFLP peaks were scored as positive unique markers ''PUMs'' and 26 peaks as negative unique markers ''NUMs''. Eighteen unique ISSR markers were detected, including 9 PUMs and 9 NUMs. The estimated similarities produced from combined data for both markers among the 18 lupin genotypes ranged between 53.3 and 80.5. Cluster analysis was presented as a dendrogram based on similarity estimates using the unweighted pair-group method with arithmetic average (UPGMA). Through a comparison study, AFLP exhibited significantly higher multiplex ratio (159.5), number of observed alleles (1.946), effective multiplex ratio (151), polymorphic information content (0.208) and marker index (31.44) when compared to those of ISSR. The use of AFLPs and ISSRs allowed for the genetic analysis spanning the lupin genome and revealed the high genetic variations found among accessions that make them useful tools for the breeder to decide the best combinations to be chosen for breeding programs.

References

Badr, A., H. El Shazly, H. El Rabey and L. E. Watson (2002). Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Canadian Journal of Botany, 80: 962-969.

Blears, M. J., S. A. De Grandis, H. Lee and J. T. Trevors (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology & Biotechnology, 21: 99-114.

Botstein, D., R. L. White, M. Skolnick and R. W. Davis (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32: 314-331.

Butler, J. (2005). Forensic DNA Typing: Biology, Technology and Genetics of STR Markers. 2nd ed: Elsevier Science and Technology Books.

Cruz, C. D. and P. C. S. Carneiro (2003). Modelos biométricos aplicados ao melhoramento genético. Viçosa: Universidade Federal de Viçosa.

Doyle, J. J. and J. L. Doyle (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.

El-Attar, H., S. Abd El-Rahman, Y. Kasem and F. Morgan (1987). The spotted crop pattern of soil Al-Nahda project. Egyptian Journal of Soil Science, 27: 397-408.

Faluyi, M. A. and W. Williams (1981). Studies of the breeding systems in lupin species: a) Self and cross compatibility in three European lupine species, b) Percentage of outcrossing in Lupinus albus. Z. Pflanzenzucht, 87: 233-239.

FAO, (2010). FAO Statistics Division. ProdSTAT Crops.

Gilbert, J. E., R. V. Lewis, M. J. Wilkinson and P. D. S. Caligari (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet., 98: 1125-1131.

Hartl, D. L. and A. G. Clark (1989). Principles of Population Genetics, 2nd ed. Sunderland, MA: Sinauer Associates.

Hefny, M. M. (2011). Agronomical and biochemical responses of white Lupinus albus L. genotypes to contrasting water regimes and inoculation treatments. Journal of American Science, 7: 187-198.

Hondelmann, W. (1984). The lupinancient and modern crop plant. Theor. Appl. Genet., 68: 1-9.

Huyghe, C. (1997). White lupin (Lupinus albus L.). Field Crops Research, 53: 147-160.

Iqbal, M., C. J. Coyne, H. Bhardwaj and R. Ahsan (2008). Genetic diversity analysis of 122 Lupin PI lines using AFLP markers. In: Agronomy Abstracts. Annual Meeting ASACSSA-SSSA Houston. Texas. p. 658-659.

Karudapuram, S. and S. Larson (2005). Identification of Hedysarum varieties using amplified fragment length polymorphism on a capillary electrophoresis system. J. Biomolecular Techniques, 16: 316-324.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209-220.

Mondini, L., A. Noorani and M. Pagnotta (2009). Assessing plant genetic diversity by molecular tools. Diversity, 1: 19-35.

Nei, M. and W. Li (1979). Mathematical model for studying genetic variance in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273.

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalski (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2: 225-238.

Ranjan, P., K. V. Bhat, R. L. Misra, S. K. Singh and J. K. Ranjan (2010). Genetic relationships of gladiolus cultivars inferred from fluorescence based AFLP markers. Scientia Hort., 123: 562-567.

Raza, S., A. Abdel-Wahab, B. Jornsgard and J. L. Christiansen (2001). Calcium tolerance and ion uptake of Egyptian lupin landraces on calcareous soils. African Crop Science Journal, 9: 393-400.

Raza, S. and B. Jornsgard (2005). Screening of white lupin accessions for morphological and yield traits. African Crop Science Journal, 13: 135-141.

Reddy, M. P., N. Sarla and E. A. Siddiq (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128: 9-17.

Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular Cloning. A Laboratory Manual. New York, USA: Cold Spring Harbor Laboratory Press.

Sbabou, L., F. Brhada, I. T. Alami and A. F. Maltouf (2010). Genetic diversity of Moroccan Lupinus germplasm investigated using ISSR and AFLP markers. International Journal of Agriculture and Biology, 12: 26-32.

Schut, J. W., X. Qi and P. Stam (1997). Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor. Appl. Genet., 95: 1161-1168.

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28: 656-715

Sneath, P. and R. Sokal (1973). Numerical Taxonomy. San Francisco, California.

Sokal, R. and C. Michener (1958). A statistical method for evaluating systematic relationships. Univ. of Kansas Science Bulletin, 38: 1409-1438.

Talhinhas, P., J. Leitao and J. Neves-Martins (2006). Collection of Lupinus angustifolius L. germplasm and characterisation of morphological and molecular diversity. Genetic Resources and Crop Evolution, 53: 563-578.

Talhinhas, P., J. Neves-Martins and J. Leitao (2003). AFLP, ISSR and RAPD markers reveal high levels of genetic diversity among Lupinus spp. Plant Breeding, 122: 507-510.

Tonk, F. A., R. R. A. Gıachıno, Ç. Sönmez, S. Yüce, E. Bayram, İ. Telci and M. A. Furan (2011). Characterization of various Hypericum perforatum clones by hypericin and RAPD analyses. Inter. Journal of Agriculture and Biology, 13: 31-37.

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, M. Zabeau (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.

Weising, K., H. Nybom, K. Wolff and G. Khal (2005). DNA Fingerprinting in Plants (Principles, Methods, and Applications), 2nd ed: CRC Press.

Williams, I. H. (1987). The pollination of lupins. Bee World, 68: 10-16.

Wolko, B., J. C. Clements, B. Naganowska, M. N. Nelson and H. Yang (2011). Lupinus: Wild Crop Relatives: Genomic and Breeding Resources. In: Kole C, editor.: Springer Berlin Heidelberg, p. 153-206.

Yeh, F. C., R. C. Yang, T. B. J. Boyle, Z. H. Ye and J.,X. Mao (1997). POPGENE, the user friendly shareware for population genetic

analysis. In. University of Alberta, Canada: Molecular Biology and Biotechnology Centre.

Yorgancilar, M., M. Babaoglu, E. Hakki and E. Atalay (2009). Determination of the relationship among Old World Lupin (Lupinus sp.) species using RAPD and ISSR markers. African Journal of Biotechnology, 8: 3524-3530.

Downloads

Published

2016-01-23

Issue

Section

Articles