IMPROVEMENT OF SOME NUTRITIONAL VALUES OF TOMATOES VIA SALINITY

Authors

  • NAHLA A. EL-SHERIF Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
  • LAMIAA F. EL-GAIED Agriculture Genetic Engineering Research Institute, (AGERI), ARC, Giza, Egypt

Abstract

The antioxidant activity status is important to determine the nutritional value of fruits and vegetables. Increased antioxidant levels not only have high benefits in preventing widespread human diseases, including cancer and cardiovascular pathogens but also it enhances shelf life as well.
This study was carried out to test the effects of 100 mM NaCl on some antioxidants (vitamins C and E) and some monosaccharides (glucose and fructose) of TYLCV virus-free tomato plants (Solanum lycopersicon) cultivar Castle Rock. The plants were treated at 30 days old with 100 mM NaCl for the next 45 days.
At 75 days old, mature leaves were harvested and tested for TYLCV infection, as this virus affects the amount of antioxidants in tomato plants. Plants were kept in cages to avoid infection with TYLCV. The plants gave negative results, confirming that they are virus-free.
Levels of vitamin C and vitamin E were determined by a reverse-phase HPLC technique while levels of glucose and fructose were determined using UPLC-MS in 75 days treated tomato leaves. Plants showed an increase in vitamin C, α-tochopherol, glucose and a slight increase in fructose contents versus the control plants.
These results are of great importance from the nutritional and health points of view where salt stress improved the plant quality by increasing the concentrations of important antioxidants (vitamin C and vitamin E). In conclusion, the use of controlled salinity level can be an effective method to produce tomatoes of good nutritional quality and with higher market price.

References

Abbasi, A. R., M. Hajirezaei, D. Hofius, U. Sonnewald and L. M. Voll (2007). Specific roles of α-and γ- tochopherol in abiotic stress response of transgenic tobacco. J. Plant Physiol., 143: 1720-1738.

Abdallah, N. A., N. M. Aref, C. M. Fauquet, M. A. Madkour and R. N. Beachy (1993). Nucleotide sequence and genome organization of an infected clone of tomato yellow leaf curl virus isolated from Egypt. IXth International Congers of Virol., Glasgow, 8-13 August, p 62-13.

Abou-Jawdah, Y., C. El Mohtar, H. Atamian and H. Sobh (2006). First report of tomato chlorosis virus in lebanon. Plant Dis., 90: 378.

Adams, P. (1988). Some responses in tomatoes in NFT to sodium. Proceedings International Congress on Soilless Culture, Inter. Society for Soilless Culture. Wageningen, Netherlands, 59-71.

Amini, F. and A. Ehsanpour (2005). Soluble proteins, proline, carbohydrates and na+/k+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am. J. Biochem. and Biotech., 1: 204-208.

Amir, N., A. Muhammad, M. J. Muhammad, M. K. Samiya, C. Huawei and H. Jin (2012). Induction of salt tolerance in tomato (Lycopersicon esculentum Mill.) seeds through sand priming. Aust. J. Crop Science, 6: 1199-1203.

Ashraf, M. and M. Tufail (1995). Variation in salinity tolerance in sunflower (Helianthus annuus L.). J. Agron. Soil Sci., 174: 351-362.

Cristina, S., K. Zuzana, P. Alberto, N. I. Flavia and I. Riccardo (2008). Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. J. Agric. Food Chem., 56: 3391-3397.

De Pascale, S., A. Maggio, V. Fogliano, P. Ambrosino and A. Ritieni (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Horti. Sci. and Biot., 76: 447-453.

El-Gaied, L. and N. El-Sherif (2012). Effect of TYLCV and salinity on growth and activity of some antioxidant enzymes in tomato plants. Egypt. J. Genet. Cytol., 41: 123-135.

Essam, K. M., F. M. Abo El-Abbas, N. M. Aref and N. A. Abdallah (2004). A new whitefly transmitted geminivirus infecting tomato plants in Egypt. Egyptian J. Virol., 1: 283-302.

Flavia, N. I. and I. Riccardo (2008). Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. J. Agric. Food Chem., 56: 3391-3397.

Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer. Review of the epidemiologic literature, J. Natl. Cancer Inst., 91: 317-331.

Goodman, R. M. (1977). Single stranded DNA genome in a whitefly transmitted plant virus. J. Virol., 83: 171-179.

Gossett, D. R., S. W. Banks, E. P. Millhollon and M. C. Lucas (1996). Antioxidant response to Nacl stress in a control and Nacl tolerant cotton cell line grown in the presesnce of paraquat buthionine sulfoxmine and exogenous glutathione. J. Plant Physiol., 112: 803-809.

Hoyos, M. E. and S. Zhang (2000). Calcium independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiol., 122: 1355-1363.

Hsu, Y. M., C. H. Lai, C. Y. Chang, C. T. Fan, C. T. Chen and C. H. Wui (2008). Characterizing the lipid-lowering effects and antioxidant mechanisms of tomato paste. Bioscience Biotech. and Bioch., 72: 677-685.

La Vecchia, C. (1997). Mediterranean epidemiological evidence on tomatoes and the prevention of digestive-tract cancers. Proc. Soc. Exp. Biol. Med., 218: 125-128.

Majoul, T., K. Chahed, E. Zamiti, L. Ouelhazi and R. Ghrir (2000). Analysis by two- dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat. Electroph., 21: 2562-2565.

Morris, J., V. Harju, J. Cambridge, N. Boonham and C. Henry (2002). Virus transmission studies and diagnostic detection of four begomovirus isolates in selected crop hosts and in Bemisia tabaci biotype B. Bulletin OEPP/EPPO, 32: 41-45.

Nielsen, M. M. and A. Hansen (2008). Rapid high-performance liquid chromatography determination of tocopherols and tocotrienols in cereals. J. Cereal Chem., 85: 248-251.

Ouyang, S. Q., S. He, P. Liu, W. Zhang, J. S. Zhang and S. Y. Chen (2011). The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci. China. Life Sci., 54: 181-188.

Rice-Evans, C. A., J. N. Miller and G. Paganga (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Science Direct, Free Radical Biol. and Med., 20: 933-956.

Riha, K., J. Fajkus, J. Siroky and B. Vyskot (1998). Developmental control of telomere lengths and telomerase activity in plants. Plant Cell, 10: 1691.

Sgherri, C., F. Navari-Izzo, A. Pardossi, G. Soressi and R. Izzo (2007). The influence of diluted seawater and ripening stage on the content of antioxidants in fruits of different tomato genotypes. J. Agric. Food Chem., 55: 2452-2458.

Shah, M. U., H. G. Martin and S. Gerhard (1994). Effect of seawater and soil salinity on ion uptake, yield and quality of tomato fruit. Anschrift der Verfasser, 14: 227-237.

Shao, H. B., L. Y. Chu and G. Wu (2007). Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Pub. Med., 54: 143-149.

Smidova, Z. and R. Izzo (2009). Improvement of nutritional value of tomatoes under salt stress conditions. Czech J. Food Sci., 27: 138-139.

Syed, G. A., R. Abdur, U. K. Naqib and N. Khalid (2011). Enhanced proline synthesis may determine resistance to salt stress in tomato cultivars. Pak. J. Bot., 43: 2707-2710.

Szymańska, R. and J. Kruk (2007). Occurrence and function of tocochromanols in plants, animals and men. Postepy Biochem., 53: 174-181.

Taqi, A. K., M. Mohd and M. Firoz (2011). A review of ascorbic acid potentialities against oxidative stress induced in plants. J. Agrobiol., 28: 97-111.

Zbynek, G., Z. Ondrej, P. Jitka, A. Vojtech, Z. Josef, H. Ales, R. Vojtech, B. Miroslava and K. Rene (2008). Determination of vitamin c (ascorbic acid) using high performance liquid chromatography coupled with electrochemical Detection. J. Sensors, 8: 7097-7112.

Downloads

Published

2016-01-23

Issue

Section

Articles