EFFECT OF TYLCV AND SALINITY ON GROWTH AND ACTIVITY OF SOME ANTIOXIDANT ENZYMES IN TOMATO PLANTS

Authors

  • LAMIAA F. EL-GAIED Agriculture Genetic Engineering Research Institute (AGERI), ARC,Giza, Egypt
  • NAHLA EL-SHERIF Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Abstract

This study was carried out to test the effects of NaCl and TYLCV on growth, total protein and some antioxidant enzymes activity of tomato (Solanum lycopersicon) cultivar CastleRock. First group of plants (60 days old) were infected with TYLCV. Mature leaves were harvested and analyzed for virus presence after viral infection. While, the second group of plants at 45 days old were treated with 0, 25, 50 and 100 mM NaCl for the next 75 days. At 120 days old for both groups different growth parameters were recorded. Mature leaves were harvested and analyzed for the amount of total protein and for the level of activity of both ascorbate peroxidase (APX) and catalase (CAT).
Plants exposed to the lowest level of salinity (25 mM NaCl) and the viral infected plants showed little effect on vegetative growth parameters, total protein, catalase and ascorbate peroxidase activity, but it caused a decrease in the number of mature fruits in both cases. While at higher concentrations of NaCl (50 and 100 mM), vegetative and fruit growth parameters were drastically reduced. Salinity treatment caused a reduction in total protein content of plants and an increase in ascorbate peroxidase activity. Whereas catalase activity increased in the TYLCV infected plants and plants treated with 25 and 50 mM NaCl and decreased in plants treated with 100 mM NaCl.

References

Abdallah, N. A., N. M. Aref, C. M. Fauquet, M. A. Madkour and R. N. Beachy (1993). Nucleotide sequence and genome organization of an infected clone of tomato yellow leaf curl virus isolated from Egypt. IXth International Congers of Virol., Glasgow, 8-13 August p 62-13.

Abou-Jawdah,Y., C. El-Mohtar, H. Atamian and H. Sobh (2006). First report of Tomato chlorosis virus in Lebanon. Plant Dis., 90: 378.

Alaa, T., S., A. M. R. Abdel-Mawgoud, M. A. El-Nemr and Y. Ghorra Chamoun (2009). Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. European Journal of Scientific Research, 3: 484-494.

Al-Aghabary, K., Z. Zhu and Q. H. Shi (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27: 2101-2115.

Aref, N. M., N. A. Abdallah, A. M. Tohamy and M. A. Madkour (1995). Genomic and serological properties of tomato yellow leaf curl geminivirus isolated in Egypt. Conf. of Pest and Dis. of Vegetables and Fruits, Egypt, 339-367.

Bradford, N. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248-254.

Britannica, C. (1990). The ‘‘New Encyclopedia Britannica’’. Encyclopedia Inc. (Chicago) 15th Ed, 11: 135-137.

Campbell, J. K., K. Canene-Adams, B. L. Lindshield, T. W. Boileau, S. K. Clinton and J. W. Erdman (2004). Tomato phytochemicals and prostate cancer risk. J. Nutr., 134: 3486S-3492S

Chaparzadeh, N. D., M. L. Amico, R. A. Khavari-Nejad, R. Izzo and F. Navari-Izzo (2004). Antioxidant responses of Calendula officinalis under salinity conditions. Plant Physiol. Biochem., 42: 695-701.

Cuartero, J. and R. Fernandez-Munoz (1999). Tomato and salinity. Sci. Hort., 78: 83-125.

Dieng, H., T. Satho, A. Abu Hassan, et al. (2011). Peroxidase activity after vi-ral infection and whitefly infestation in juvenile and mature leaves of Solanum lycopersicum. J. Phytopath., 159: 707-712.

Dogan, M. (2012). Investigation of the effect of salt stress on the antioxidant enzyme activities on the young and old leaves of salsola (Stenoptera) and tomato (Lycopersicon esculentum L.). African J. Plant Sci., 6: 62-72.

Essam, K. M., F. M. Abo El-Abbas, N. M. Aref and N. A. Abdallah (2004). A new whitefly transmitted Geminivirus infecting tomato plants in Egypt. Egyptian J. Virol., 1: 283-302.

Frary, A., D. Göl, D. keles, B. Ökmen, H. Pinar, H. Şığva and A. Yemenicioğlu (2010). Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biology, 2229: 10-58.

Goodman, R. M. (1977). Single stranded DNA genome in a whitefly transmitted plant virus. Virol., 83: 171-197.

He, Y., Z. J. Zhu, J. Yang, X. L. Ni and B. Zhu (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66: 270-278.

Hamilton, W. D. O., D. M Bisaro, R. H. A. Coutts and K. W. Buck (1983). Demonstration of bipartite nature of the genome of single stranded DNA plant virus by infection with cloned DNA components. Nucleic Acids Res., 11: 7387-7396.

Khan, M. H., K. L. B. Singha and S. K. Panda (2002). Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl-salinity stress. Acta Phys. Plant., 24: 145-148.

Kraus, T. E. and R. A. Fletcher (1994). Paclobutrazol protects wheat Seedlings from heat and paraquat injury is detoxificationof active oxygen involved. Plant and Cell Phys., 35: 45.

Liao, Y. W. K., K. Shi, L. J. Fu, S. Zhang, X. Li, D. K. Dong, Y. P. Jiang, Y. H. Zhou, X. J. Xia, W. S. Liang and J. Q. Yu (2012).The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta, 235: 225-238.

Mart Krupovic, Janne, J. Ravantti and Dennis, H. Amford (2009). Geminiviruses a tale of a plasmid becoming a virus. BMC Evol. Bio., 9: 112 .

Mittova, V., M. Tal, M. Volokita and M. Guy (2002). Salt stress induced upregulation of an efficient chloroplast antioxidant system in the salttolerant wild tomato species Lycopersicon pennelli but not in the cultivated species. Phys. Plant, 115: 393-400.

Morris, J., V. Harju, J. Cambridge, N. Boonham and C. Henry (2002). Virus transmission studies and diagnostic detection of four begomovirus isolates in selected crop hosts and in Bemisia tabaci biotype B. Bulletin OEPP/EPPO Bulletin, 32: 41-45.

Nakano, Y. and K. Asada (1981). Hydrogen peroxide scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867-880.

Oztekin, G. B., Y. Tuzel (2011). Salinity response of some tomato rootstocks at seedling stage. African Journal of Agricultural Research, 6: 4726-4735.

Prasad, T. K. (1997). Role of catalase in inducing chilling tolerance in preemergent maize seedlings. Plant Phys., 114: 1369-1376.

Pierre, D., P. Frettinger, M. Edmond Ghanem, A. Blondiaux, J. Bauwens, S. Cotton, C. De Clerck, A. Dewalque, J. Guy, F. Heuze, A. Massoz, T. Tassignon, G. Van Aubel, P. du Jardin and M. Fauconnier (2009). Lipooxygenase pathway and antioxidant system in salt stressed tomato seedling (Lycopersicon esculentum Mill). Biotechnology Agron. SOC. Environ., 13: 529-536.

Riha, K., J. Fajkus, J. Siroky and B. Vyskot (1998). Developmental control of telomere lengths and telomerase activity in plants. Plant Cell, 10: 1691.

Rojas, A., A. Kvarnheden and J. P. T. Volkonen (2000). Geminiviruses infecting tomato crops in Nicaragua. Plant Dis., 84: 843-846.

Shalata, A., V. Mittova, M. Volokita, et al. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum, 112: 487-494.

Sumalee, C., W. Pattanagul and P. Theerakulpisut (2008). Effects of salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.). Reproductive Stage Science Asia, 34: 69-75.

Upadhyaya, A., T. D. Davis, R. H. Walser, A. B. Galbraith and N. Sankhla (1989). Uniconazole-induced allevation of low temperature damage in relation to antioxidant activity. Hortscience, 24: 955-957.

Verhoeyen, M. E., A. Bovy, G. Collins, S. Muir, S. Robinson, C. H. R. de Vos and Colliver (2002). Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exper. Bot., 53: 2099-2106.

Downloads

Published

2016-01-12

Issue

Section

Articles