BIOLOGICAL AND MOLECULAR STUDIES ON THE TOXIC EF-FECT OF VEGETATIVE INSECTICIDAL PROTEIN (VIPs) OF Ba-cillus thuringiensis EGYPTIAN ISOLATES AGAINST WHITEFLIES
Abstract
Whitefly Bemisia tabaci (Gennadius) transmitted geminiviruses cause epidemics in vegetable and fiber crops. It can infect more than 600 species of host plants. It also considered as the major vector transmitting various types of geminiviruses such as tomato yellow leaf curl virus (TYLCV) which cause great damage to tomatoes crop. Previous studies have reported that the vegetative insecticidal proteins (VIPs) of Bacillus thuringiensis (Bt) revealed insecticidal activity against different insect species. In this study, two local isolates of B. thuringiensis named BtC-18 and BtDI-29 were screened for the insecticidal activity of VIPs against whitefly population. Analysis of median lethal concentration (LC50) revealed that B. thuringiensis strain BtC-18 is more potent and toxic than BtDI-29 strain against whiteflies with an estimated LC50 of 90 ppm and 160 ppm for BtC-18 and BtDI-29, respectively. However, the median lethal time (LT50) value did not show significant difference between both isolates. PCR analysis of vip genes confirmed the presence of vip1, vip2 and vip3 genes on BtC-18 genome. Proteins extract from the BtC-18 culture pellet were further purified by 80% saturation of ammonium sulfate precipitation. The purified protein showed a clear band at 88 KDa corresponding to Vip3A protein as previously demonstrated. The LC50 of the purified band at 88KDa showed insecticidal activity against white fly with an estimated LC50 of 898 ppm.References
Abdallah, N. A., N. M. Aref, C. M. Fauquet, M. A. Madkour and R. N. Beachy (1993). Nucleotide sequence and genome organization of an infectious DNA clone of tomato yellow leaf curl virus isolated from Egypt. Paper presented at IXth International Congress of Virology, 8-13 August P63. 21 (Abstr.). Glasgow, Scotland. UK.
Balaraman, K. (2005). Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis. J. Vector Borne Dis., 42: 81-86.
Bedford, I. D., R. W. Briddon, P. Jones, N. Alkaff and P. G. Markham (1994). Differentiation of three whitefly-transmitted geminiviruses from the Republic of Yemen. Eur. J. Plant Pathol., 100: 243-257.
Bird, J. and K. Maramorosch (1978). Viruses and virus diseases associated with whiteflies. Adv. Virus. Res., 22: 55-110. Burges, H. D. (1982). Control of insects by bactéria. Parasitol., 84:79-114.
Carozzi, N. and M. Koziel (1997). Advances in Insect Control: The Role of Transgenic Plants. London: Taylor & Francis Ltd.
Costa, A. S. (1979). Whitefly transmitted plant diseases. Ann. Rev. of Phyto., 16: 129-149.
El-Gaied, L. F., N. A. El-Sherif and R. E. Salem (2014). Biological and molecular characterization of a geminivirus affecting pepper plants in Egypt. Arab. J. Biotech. (In press).
Espinasse, S., J. Chaufaux, C. Buisson, S. Perchat, M. Gohar, D. Bourguet and V. Sanchis (2003). Occurrence and linkage between secreted insecticidal toxins in natural isolates of Bacillus thuringiensis. Curr. Microbiol., 47: 501-507.
Estruch, J. J. and C. G. Yu (1998). Plant pest control. Patent WO 9844137.
Estruch, J., W. Warren, M. Mullins, J. Nye, A. Craige and G. Koziel (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA, 93: 5389-5394. Finny, D. J. (1971). Probit Analysis. 3ed Cambridge University Press, Cambridge, p 333.
Gottlieb, Y., E. Zchori-Fein, N. Mozes-Daube, S. Kontsedalov, M. Skaljac, M. Brumin, I. Sobol, H. Czosnek, F. Vavre, F. Fleury and M. Ghanim (2010). The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol., 84: 9310-9317.
Hernandez-Rodrguez1, C. S., A. Boets, J. Van Rie and J. Ferre (2009). Screening and identification of vip genes in Bacillus thuringiensis strains. J. Applied Microbio., 107: 219-225.
Inbar, M. and D. Gerling (2008). Plantmediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Entomol., 53: 431-448.
Mohammad, J. A. (2005). Whitefly control potential of Eretmocerus parasitoids with different reproductive modes. PhD Thesis, (Iran), Laboratory of Entomology, Wageningen University, Netherlands.
Osman, G., A., Y. Assaeedi, D. El-Ghareeb and R. Alreedy (2013). Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s). Lett. Appl. Microbiol., ISSN 0266-8254.
Sambrook, J., E. F. Fritsch, and T. Maniatis (1989). "Molecular Cloning: A Laboratory Manual." 2ed, Cold Spring Harbor Laboratory, New York.
Sattar, S. and M. K. Maiti (2011). Molecular characterization of novel vegetative insecticidal protein from Bacillus thuringiensis effective against spsucking insect pest. J. Microbial Biotech., 21: 937-946.
Schuster, D. J., P. A. Stansly, P. R. Gilreath and J. E. Polston (2008). Management of Bemisia, TYLCV and insecticide resistance in Florida vegetables. J. Insect Sci., 8: 43-44.
Schuster, D. J., R. S. Mann, M. Toapanta, R. Cordero, S. Thompson, S. Cyman, A. Shurtleff and R. F. Morris (2010). Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manage. Sci., 66: 186-195.
Sellami, S., K. Jamoussi, E. Dabbeche, and S. Jaoua (2001). Increase of the Bacillus thuringiensis secreted toxicity against lepidopteran larvae by homologous expression of the vip3 lb gene during sporulation stage. Curr Microbiol., 63: 289-294.
Shi, Y, W. Ma, M. Yuan, F. Sun and Y. Pang (2006). Cloning of vip1/vip2 genes and expression of Vip1Ca/Vip2Ac proteins in Bacillus thuringiensis. World J. Microbiol. Biotechnol., 23: 501-507. Thiago, L. M. F., L. L. B. Edson and T. F. Ricardo (2012). New experimental tools for bioassays with whitefly in laboratory. Pesquisa Agropecuária Brasileira, 47: 1782-1784. Warren, G. W. (1997). Vegetative insecticidal proteins: novel proteins for control of corn pests, p 109-121. In Carozzi N, Koziel M (ed), Advances in insect control: role of transgenic plants. Taylor and Francis, London, UK. Yu, C. G., M. A. Mullins, G. W. Warren, M. G. Koziel and J. J. Estruch (1997). The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol., 63: 532-536.
Yu, X, A. Zheng, J. Zhu, S. Wang, L. Wang, Q. Deng, S. Li, H. Liu and P. Li (2011). Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr. Microbiol., 62: 752-757