BIOINFORMATICS ANALYSIS USING HOMOLOGY MODELING TO PREDICT THE THREE-DIMENSIONAL STRUCTURE OF Spodoptera littoralis (Lepidoptera: Noctuidae) AMINOPEPTIDASE N RECEPTOR

Authors

  • A. M. SHOKRY Bioinformatics Dept., Agriculture Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt Genomic and Biotechnology Section, Biology Dept., Fac. of Sciences, King Adulaziz Univ., Jeddah, Saudi Arabia
  • M. A. ISMAIL Faculty of Education - Ain Shams University, Cairo, Egypt
  • HEBA M. YASSIN Faculty of Education - Ain Shams University, Cairo, Egypt
  • S. A. MOSTAFA Bioinformatics Dept., Agriculture Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
  • M. S. SALAMA Faculty of Science- Ain Shams University, Cairo, Egypt
  • M. A. SHAHIN Faculty of Education - Ain Shams University, Cairo, Egypt

Abstract

Insect pests are the major cause of damage to commercially important agricultural crops. The continuous application of synthetic pesticides resulted in developing severe insect resistance in addition to induce irreversible damage to the environment. Bacillus thuringiensis (Bt) emerged as a valuable biological alternative in pest control. The midgut aminopeptidase N (APN) of pest insect is a receptor for Bacillus thuringiensis Cry1 toxin. A 108.58 kDa APN has been characterized in Spodoptera littoralis. In the present in silico study, a homology model of SlAPN was constructed using Swiss-Model,  Protein  Modeling  Server.   The study detected that SlAPN three-dimensional structure has 4 structural domains. Domain I of the receptor is the region that recognizes Cry1 toxins, a part of this section might be very important in this role. Domain II has functions in Cry1 protein-APN interaction. Domain III has a sandwich topology and domain IV is a superhelix. The present data help in the development of a roadmap for the design and synthesis of novel Cry toxins and improve toxic activities depending on the APN's conserved structures which will contribute to the management of insect resistance in the field.

References

Agrawal, N., P. Malhotra and R. K. Bhatnagar (2002). Interaction of gene cloned and insect cell expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol., 68: 4583-4592.

Albiston, A. L., S. Ye and S. Y. Chai (2004). Membrane bound members of the M1 family: more than aminopeptidases. Protein Pept. Lett. , 11: 491-500.

Arnold, K., L. Bordoli, J. Kopp and T. Schwede (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics, 22: 195-201.

Atsumi, S., E. Mizuno, H. Hara, K. Nakanishi, M. Kitami, N. Miura, H. Tabunoki, A. Watanabe and R. Sato (2005). Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin. Appl Environ. Microbiol., 71: 3966-3977.

Banks, D. J., G. Hua and M. J. Adang (2003). Cloning of a Heliothis virescens 110 kDa amino-peptidase N and expression in Drosophila S2 cells, Insect Biochem. Mol. Biol., 33: 499-508.

Bravo, A., S. S. Gill and M. Soberón (2005). Bacillus thuringiensis mechanisms and use. In: Comprehensive Molecular Insect Science. Elsevier edt., 175-206.

Bravo, A., S. S. Gill and M. Soberón (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon., 49: 423-435.

Bravo, A., I. Go´mez, J. Conde, C. Munoz-Garay, J. Sánchez and M. Zhuang (2004). Oligomerization triggers differential binding of a pore-forming toxin to a different receptor leading to efficient interaction with membrane microdomains. Biochem. Biophys. Acta, 1667: 38-46.

Burley, S. K. (2000). An overview of structural genomics. Nat. Struct. Biol., 7: 932-938.

Chen, J., M. R. Brown, G. Hua and M. J. Adang (2005). Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. Cell Tissue Res., 321: 123-129.

Choi, S. H., H. S. Kim and E. Y. Lee (2009). Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase. Biotechnol. Lett., 31: 1617-1624.

Crava, C. M., Y. Bel, S. F. Lee, B. Manachini, D. G. Heckel and B. Escriche (2010). Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression. Insect Biochemistry and Molecular Biology, 40: 506-515

Cristofoletti, P. T. and W. R. Terra (2000). The role of amino acid residues in the active site of a midgut microvillar aminopeptidase from the beetle Tenebrio molitor. Biochim. Biophys. Acta, 1479: 185-195.

Denolf, P., K. Hendrickx, J. Van Damme, S. Jansens, M. Peferoen, D. Degheele and J. Van Rie (1997). Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem., 248: 748-761.

Fernández, L. E., I. Gómez, S. Pacheco, I. Arenas, S. S. Gill, A. Bravo and M. Soberón (2008). Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins. Peptides, 29: 324-329.

Guex, N. and M. C. Peitsch (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18: 2714-2723.

Herrero, S., T. Gechev, P. L. Bakker, W. J. Moar and R. A. de Maagd (2005). Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes. BMC Genomics, 6: 96

Jurat-Fuentes, J. L. and M. J. Adang (2004). Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem., 271: 3127-3135.

Khan, J. M. and S. Ranganathan (2009). A multi-species comparative structural bioinformatics analysis of inherited mutations in a-D-Mannosidase reveals strong genotype-phenotype correlation. BMC Genomics, 10(Suppl 3):S33

Knight, P. J., J. Carroll and D. J. Ellar (2004). Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol., 34: 101-12.

Knight, P. J., N. Crickmore and D. J. Ellar (1994). The receptor for Bacillus thuringiensis CrylA (c) δ endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 11: 429-436.

Kyrieleis, O. J. P., P. Goettig, R. Kiefersauer, R. Huber and H. Brandstetter (2005). Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations. J. Mol. Biology, 349: 787-800.

Lodge, J., P. Lund and S. Minchin (2007). Gene Cloning: principles and applications. Taylor & Francis Group, ISBN 0-203-96728-3 Master e-book ISBN, UK, pp 451.

Luan, Y. and W. Xu (2007). The structure and main functions of aminopeptidase N. Current Medicinal Chemistry, 14: 639-647.

Luo, K., Y. LU and M. J. Adang (1996). A 106 kDa form of aminopeptidase is a receptor for Bacillus thuringiensis Cry1C δ-endotoxin in the brush border membrane of Manduca sexta. Insect Biochem. Mol. Biol., 26: 783-791.

Nakanishi, K., K. Yaoi, N. Shimada, T. Kadotani and T. Sato (1999). Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success. Biochim. et Biophysica Acta, 1432: 57-63.

Nakanishia, K., K. Yaoib, Y. Naginoa, H. Haraa, M. Kitamia, S. Atsumia, N. Miuraa and R. Satoa (2002). Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella, their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Lett., 519: 215-220.

Ning, C., K. Wu, C. Liu, Y. Gao, L. Jurat-Fuentes and X. Gao (2010). Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (HŰbner) larvae. Journal of Insect Physiology, 56: 666-672.

Pierleoni, A., P. L. Martelli and R. Casadio (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 9: 392-403.

Pigott, C. R. and D. J. Ellar (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71: 255-281.

Rajagopal, R., S. Sivakumar, N. Agrawal, P. Malhotra and R. K. Bhatnagar (2002). Silencing of midgut aminopeptidase N of Spodoptera litura by doublestranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem., 277: 46849-46851.

Sahay, A. and M Shakya. (2010). In silico analysis and homology modeling of antioxidant proteins of Spinach. J. Proteomics Bioinformatics, 3: 148-154.

Sali, A. and T. L. Blundell (1993). Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol., 234: 779-815.

Sanjay, S., I. N. Trivedi, R. Prasad, J. Kuruvilla, K. K. Rao and H. S. Chhatpar (2001). Aminopeptidase-N from the Helicoverpa armigera (Hubner) Brush Border Membrane Vesicles as a Receptor of Bacillus thuringiensis Cry1Ac δ-Endotoxin. Current Microbiology, 43: 255-259.

Saraswathy, N. and P. A. Kumar (2004). Protein engineering of δ-endotoxins of Bacillus thuringiensis. Electronic Journal of Biotechnology, 7: 178-188.

Sasin, J. M. and J. M. Bujnicki (2004). In silico structural analysis of parasporin 2 protein sequences of non-toxic Bacillus thuringiensis. Nucleic Acids Res., 32: 586-589.

Sateesh, P., A. Rao, S. K. Sangeeta, M. N. Babu and R. S. Grandhi (2010). Homology modeling and sequence analysis of anxC3.1. International Journal of Engineering Science and Technology, 2: 1125-1130.

Schwede, T., J. Kopp, N. Guex and M. C. Peitsch (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res., 31: 3381-3385.

Shinkawa, A., K. Yaoi, T. Kadotani, M. Imamura, N. Koizumi, H. Iwahana and R. Sato (1999). Binding of phylogenetically distant Bacillus thuringiensis Cry toxins to a Bombyx mori aminopeptidase N suggests importance of Cry toxin’s conserved structure in receptor binding. Current Microbiology, 39: 14-20.

Singh, S., A. Kumar, A. Patel, A. Tripathi, D. Kumar and M. K. Verma (2010). In Silico 3D Structure Prediction and Comparison of Nucleocapsid Protein of H1N1. Journal of Modeling and Simulation of Systems, 1: 108-111

Sivakumar, S., R. Rajagopal, G. R. Venkatesh, A. Srivastava and R. K. Bhatnagar. (2007). Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J. Biol. Chem., 282: 7312-7319.

Tajne, S., R. Sanam, R. Gundla, N. S. Gandhi, R. L. Mancera, D. Boddupally, D. R. Vudem and V. R. Khareedu (2012). Molecular modeling of Bt Cry1Ac (DI–DII)– ASAL (Allium sativum lectin)– fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta. Journal of Molecular Graphics and Modeling, 33: 61-76.

Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and L. A. Bulla (1995). Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem., 270: 5490-5494.

Valaitis, A. P., J. L. Jenkins, M. K. Lee, D. H. Dean and K. J. Garner (2001). Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch. Insect Biochem. Physiol., 46: 186-200.

Yang, Y., Y. C. Zhu, J. Ottea, C. Husseneder, B. R. Leonard, C. Abel and F. Huang (2010). Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochemistry and Molecular Biology 40: 592-603.

Yassin, H. M., A. M. Shokry, S. A. Mostafa, M. S. Salama and M. A. Shahin (2010). Identification, isolation and cloning of cDNA encoding aminopeptidase from the midgut of the Egyptian cotton leaf worm that serves as a receptor for Cry toxin. Egypt. J. Genet. Cytol., 39: 179-192.

Wieman, H., K. Tondel, E. Anderssen and F. Drablos (2004). Homology-Based Modeling of Targets for Rational Drug Design. Mini-Reviews in Medicinal Chemistry, 4: 793-804.

Zhang, S., H. Cheng, Y. Gao, G. Wang, G. Liang and K. Wu (2009). Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol., 39: 421-430.

Downloads

Published

2016-01-12

Issue

Section

Articles

Most read articles by the same author(s)