Identification, Isolation and Cloning of cDNA Encoding Aminopeptidase from the Midgut of the Egyetian Cotton Leaf Worm That Serves as a Receptor for CRY Toxin

Authors

  • HEBA M. YASSIN Faculty of Education, Ain Shams University, Cairo, Egypt
  • S. A. MOSTAFA Agriculture Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
  • A. M. SHOKRY Agriculture Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
  • M. S. SALAMA Faculty of Science, Ain Shams University, Cairo, Egypt
  • M. A. SHAHIN Faculty of Education, Ain Shams University, Cairo, Egypt

Abstract

Bacillus thuringiensis (Bt) is an aerobic, spore-forming bacterium that produces crystalline inclusions during the sporulation phase of growth that are composed of proteins known as δ-endotoxins (Bravo et al., 2005). The δ-endotoxins comprise two multigenic families, cry and cyt. Cry proteins are specifically toxic to different insect orders, Lepidoptera, Coleoptera, Hymenoptera, Diptera or nematodes (Go´mez et al., 2007). The crystal inclusions ingested by susceptible larvae, dissolve in the alkaline environment of the gut, and the solubilized inactive protoxins are cleaved by midgut proteases yielding active monomeric 60–70 kDa protease-resistant toxin (Pardo-Lo´ pez et al., 2009; Bravo et al., 2005), then the Cry toxic fragment binds to specific receptors located in the microvilli of the apical membrane of midgut epithelial cells that leads to membrane insertion, pore formation, cell lysis and the eventual death of the host (Bravo et al., 2004 & 2005).
For Cry1A toxins (lepidopteran specific toxins), at least four different binding-proteins have been described as receptors for the Cry toxins; a cadherin-like protein (CADR), a glycosylphos-phatidyl–inositol (GPI) - anchored amin-opeptidase-N (APN), a GPI-anchored alkaline phosphatase (ALP) and a 270 kDa glycoconjugate (Vadlamudi et al., 1995; Knight et al., 1994; Jurat Fuentes et al.,
2004; Valaitis et al., 2001).
APN is the most extensively studied Cry receptor identified and isolated from several lepidopteran insects. APN serves as a binding molecule for Cry1C in Manduca sexta (Luo et al., 1996) and Spodoptera litura (Agrawal et al., 2002), for Cry1Aa in Bombyx mori (Nakanishi et al., 2002; Jenkins and Dean 2001; Yaoi et al., 1999) and for Cry1Ac in M. sexta (Garczynski et al., 1995; Knight et al., 1994 & 1995; Sangadala et al., 1994), Lymantria dispar (Lee et al., 1996; Valaitis et al., 1995) and Heliothis virescens (Gill et al., 1995; Luo et al., 1997; Oltean et al., 1999)
The characterization of receptors in the economically important pests by studying their binding to different Cry toxins will help in evaluating the molecular mechanism of action of Cry toxin and will lead to a better understanding of the mechanism of development of resistance to these proteins in insects.
The Egyptian cotton leaf worm (Spodoptera littoralis Boisduval) is an important pest in Mediterranean and Asian countries; it populates fields in relatively close locations (Hamal et al., 1991) and is considered a totally polyphagous pest (Lutfallah et al., 1993) affecting various economically important crops in Egypt such as cotton, maize, rice, soybeans and vegetables (Salama and Matter, 1991).
To identify the precise toxin binding targets in insects, midgut cell membranes have been electrophoretically separated and incubated with Bt cry toxins in Western blot analysis. We have identified the proteins involved in CryIAc toxicity to Spodoptera littoralis. A 109-kDa B. thuringiensis toxin-binding protein from the midgut brush-border membrane that binds the Cry1Ac toxin was determined. A cDNA clone encoding this protein was cloned, sequenced and characterized. The analysis of the predicted amino acids sequence reveals that the protein belongs to the aminopeptidase N family of proteins.

References

Adang, M. J. (2004). Insect aminopepti-dase N. In: Barret, A. J., Rawlings, N. D., Woessner, J. F. (Eds.), Handbook of proteolytic enzymes, Vol 1 Elsevier academic press, New York, 296-299.

Agrawal, N., P. Malhotra, and R. K. Bhatnagar (2002). Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol., 68: 4583-4592.

Bauer, L. S. (1995). Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Symposium on Pesticide Resistance, Florida Entomologist, 78: 414-443.

Bravo, A., S. S. Gill and M. Sobero´n (2005). Bacillus thuringiensis mechanisms and use. In: Comprehensive molecular insect science. Elsevier B.V., 175-206.

Bravo, A., I. Go´mez, J. Conde, C. Munoz-Garay, J. Sa´nchez and M. Zhuang (2004). Oligomerization triggers differential binding of a pore-forming toxin to a different receptor leading to efficient interaction with membrane microdomains. Biochem. Biophys. Acta, 1667: 38-46.

Denolf, P., K. Hendrickx, J. Van Damme, S. Jansens, M. Peferoen, D. Degheele, and J. Van Rie (1997). Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem., 248: 748-761.

Garczynski, S. F. and M. J. Adang (1995). Bacillus thuringiensis CryIA(c) δ-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchor. Insect Biochem. Mol. Biol., 25: 409-415.

Gill, S. S., E. A. Cowles, and V. Francis (1995). Identification, isolation and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem., 270: 27277-27282.

Go´mez, I., L. Pardo-Lo'pez, C. Mun'oz-Garay, L. E. Fernandez, C. Pe'rez, J. Sa'nchez, M. Sobero'n, and A. Bravo (2007). Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides., 28: 169-173.

Hamal, M., M. I. Brownbridge, M. Broza, and B. Sneh (1991). Screening for highly effective isolates of Bacillus Thuringiensis against Spodoptera exempta and Spodoptera littoralis. Phytoparasitica, 19: 9-21.

High, S. (1992). Membrane protein insertion into the endoplasmic reticulum--another channel tunnel? BioEssays, 14: 535-540.

Jenkins, J. L. and D. H. Dean (2001). Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors. BMC Biochem., 2: 12-19.

Jurat-Fuentes, J. L. and M. J. Adang (2004). Characterization of a Cry1Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem., 271: 3127-3135.

Knight, P. J., N. Crickmore and D. J. Ellar (1994). The receptor for Bacillus thuringiensis CrylA (c) δ endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 11: 429-436.

Knight, P. J., B. H. Knowles and D. J. Ellar (1995). Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J. Biol. Chem., 270: 17765-17770.

Kozak, N. (1987). An analysis of 5' non-coding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research, 15: 8125-8148.

Lee, M. K., T. H. You, B. A. Young, J. A. Cotrill, A. P. Valaitis and D. H. Dean (1996). Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin, Appl. Environ. Microbiol., 62: 2845-2849.

Lu, Y. J. and M. J. Adang (1996). Conversion of Bacillus thuringiensis Cry1Ac-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol. Insect Bio- chem. Mol. Biol., 26: 33-40.

Luo, K., Y. J. Lu and M. J. Adang (1996). A 106-kDa form of aminopeptidase is a receptor for Bacillus thuringiensis Cry1C δ-endotoxin in the brush border membrane of Manduca sexta. Insect Biochem. Mol. Biol., 26: 783-791.

Luo, K., S. Sangadala, L. Masson, A. Mazza, R. Brousseau and M. J. Adang (1997). The Heliothis virescens 170 kDa aminopeptidase functions as “receptor A” by mediating specific Bacillus thuringiensis Cry1A δ endotoxin binding and pore formation. Insect Biochem. Mol. Biol., 27: 735-743.

Luo, K., J. R. McLachlin, M. R. Brown and M. J. Adang (1999). Expression of a glycosylphosphatidy-linositol-linked Manduca sexta aminopeptidase N in insect cells. Protein Exp. Purif., 17: 113-122.

Lutfallah, A. F., M. R. Sherif and F. K. El Duweini (1993). Susceptibility of some commercial corn varieties to infestation with certain corn pests in Egypt. Egyptian Journal of Agricultural Research, 71: 717-724.

Nakanishia, K., K. Yaoib, Y. Naginoa, H. Haraa, M. Kitamia, S. Atsumia, N. Miuraa and R. Satoa (2002). Aminopeptidase N isoforms from

the midgut of Bombyx mori and Plutella xylostella, their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Lett., 519: 215-220.

Oltean, D. I., A. K. Pullikuth, H. K. Lee and S. S. Gill (1999). Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA. Appl. Environ. Microbiol., 65: 4760-4766.

Pardo-Lo'pez, L., C. Mun'oz-Garay, H. Porta, C. Rodrı´guez-Almaza´n, M. Sobero'n and A. Bravo (2009). Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides, 30: 589-595.

Pigott, C. R. and D. J. Ellar (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71: 255-281.

Salama, H. S. and M. M. Matter (1991). Tolerance level to Bacillus thuringiensis Berliner in the cotton leafworm Spodoptera littoralis Biosduval (Lepidoptera: Noctuidae). J. Appl. Entomol., 111: 225-230.

Sangadala, S. S., F. Walters, L. H. English and M. J. Adang (1994). A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ efflux in vitro. J. Biol. Chem., 269: 10088-10092.

Sanjay, S., I. N. Trivedi, R. Prasad, J. Kuruvilla, K. K. Rao and H. S. Chhatpar (2001). Aminopeptidase-N from the Helicoverpa armigera (Hubner) brush border membrane vesicles as a receptor of Bacillus thuringiensis Cry1Ac δ-Endotoxin. Current Microbiol., 43: 255-259.

Takesue, S., K. Yokota, S. Miyajima, R. Taguchi, H. Ikezawa and Y. Takesue (1992). Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidy-linositol-specific phospholipase C. Comp. Biochem. Physiol., 102: 7-11.

Terra, W. R. and C. Ferreira (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109: 1-62.

Van Rie, J., S. Jansens, H. Hofte, D. Degheele and H. Van Mellaert (1990). Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis δ-endotoxins. Appl. Env. Microbiol., 56: 1378-1385.

Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and L. A. Bulla (1995). Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem., 270: 5490-5494.

Valaitis, A., M. K. Lee, F. Rajamohan and D. H. Dean (1995). Brush border membrane aminopeptidase N in the midgut of the gypsy moth serves as the receptor for the CryIAc δ-endotoxins of Bacillus thuringiensis. Insect Biochem. Mol. Biol., 25: 1143-1151.

Valaitis, A. P., J. L. Jenkins, M. K. Lee, D. H. Dean and K. J. Garner (2001). Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Arch. Insect Biochem. Physiol., 46: 186-200.

Wolfersberger, M., P. Lüthy, A. Maurer, F. Parenti, V. Sacchi, B. Giordana and G. M. Hanozet (1987). Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbate butterfly (Pieris brassicae). Comp. Biochem. Physiol., 86: 301-308.

Yaoi, K., K. Nakanishi, T. Kadotani, M. Imamura, N. Koizumi, H. Iwahana and R. Sato (1999): Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N. FEBS Lett., 463: 221-224.

Downloads

Published

2016-01-11

Issue

Section

Articles

Most read articles by the same author(s)