C-BANDING PATTERNS AND ALLOCATION OF ALLICIN GENES ON CHROMOSOMES OF TWO GARLIC CULTIVARS
Abstract
In order to study c-banding patterns and the allocation of the allicin gene on Garlic chromosomes, some cytological examinations on two Garlic cultivars (Egaseed 2 and AZO 3) were done. The diploid number of plants of the two studied cultivars was 2n = 16 without numerical aberrations. Considerable differences in heterochromatic C-banding patterns (including number, size, and intensity) between the interphase and prophase stages and among the plants of the two studied garlic cultivars were also observed. The interphase cells of a bolter cultivar (Egaseed 2) showed two C-band blocks, while only one heavy large C-band block was seen at the prophase. Likewise, three large C-bands were found at the interphase of a non-bolter cultivar (AZO 3), while two large blocks were observed at the prophase. No valuable variations of C-banding patterns were observed in the metaphase chromosomes between the two studied cultivars. C-bands were mainly scattered in the interstitial region on the short arm of both the 6th and 7th chromosomes. On the other hand, four FISH signals of Allicin genes localized in four different compartments were observed at the interphase stage of the Egaseed 2 cultivar. Likewise, four FISH signals were localized on four metaphase chromosomes of the Egased 2 cultivar. Three FISH signals of Allicin genes were detected in three different compartments at interphase cells of the AZO 3 cultivar. In the same manner, three signals were scattered on three metaphase chromosomes. It could be concluded that the considerable differences in the number and allocation of allicin genes along with bolter and non-bolter garlic genomes are crucial and may play an esential role in the future study of gene mapping.
References
Abd El-Twab M. H. and Kondo K., (2008). Identification of genomic relationships in allotetraploid hybrids between Chrysanthemum lavandulifolium X Ch. chanetii by FISH and GISH. Chromosome Botany, 3:19-25.
Anwar G. M. and Ata A. M., (2017). Chromosome association of two flowering garlic clones. Indian Journal of Plant Sciences, 6(2):52- 58.
Anwar G. M., Ata A. M., Mahmoud M. A. H., Tawfeek A. R. and Dakhly O. F., (2017). morphological and biochemical assessment of sixteen garlic clones cultivated in Egypt. Egypt. J. Plant Breed., 21:820-835.
Anwar G. M., Farag F. F. and Desoukey S. Y., (2018). Characterization of some garlic clones using morphological, cytological, molecular and chemical techniques. J. Adv. Biomed. & Pharm Sci., 1:50-55.
Anwar G. M., Mahmoud M. A. H., Ata A. M., Ragab A. K. R. and Bakry H. S. H., (2020). Studies of molecular variation sources using RAPD and SSR markers in two garlic clones. J. Mod. Res., 2:115-122.
Anwar G. M., Ata A. M., Abu Salha A. E. and Abdallah A. A., (2021). Chromosomal and biochemical assessments of six garlic clones. J. Mod. Res., 3:1-5.
Ata A. M., (2005). Constitutive hetero-chromatin diversification of two Allium species cultivated in Egypt. Minia J. of Agric. Res. and Develop., 25:663-676.
Ata A. M. and Osman S. A., (2009). Gametogenesis of Two Garlic Clones Selected from Egyptian Indigenous Forms. African Crop Science Conference Proceedings, 9:483-487.
Ata A. M., Anwar G. M., Mahmoud M. A. H., Ragab A. K.R. and Bakry H. S. H., (2020). Variation of karyotype formula, and asymmetry between individual plants of garlic and its relationship with AC transposon. Minia J. of Agric. Res. & Develop., 40:1-19.
Avramova Z. V., (2002). Heterochromatin in animals and plants similarities and differences. Plant Physiol., 129:40-49.
Bacelar P. A., Feitoza A. L. L., Valente S. E. S., Gomes R. L. F., Martins L. V., Almeida P. M., Silva V. B., Lopes AC. A., Carvalho R. and Peron A. P., (2021). Variations in heterochromatin content reveal important polymorphisms for studies of genetic improvement in garlic (Allium sativum L.). Brazilian J. of Biology, 83:1-10.
Bozzini A., (1991). Discovery of Italian fertile tetraploid line of garlic. Eco. Botany, 45:436-438.
Cortes F. G. and Escalza P., (1986). Analysis of different banding patterns and late replicating regions in chromosomes of A. cepa, A. sativum and A. nigrum. Genetica, 71:39-46.
Cortes F. G., Gonzalez-Gil G. and Hazen M. J., (1983). C-banding and sister chromatid exchanges in three species of the genus Allium (A. cepa, A. ascalonicum and A. sativum). Caryologica, 36:203-210.
Elmamlouk E. A. K., Ata A. M., Mahmoud M. A. H., Foly H. M. and Allam H. Z., (2002). Cytological features and isozymes profile of some Allium sativum (garlic) genotypes cultivated in Egypt. Minia J of Agric Res and Develop 22:1420-1440.
Helmey R. K., (2020). Exploration of Karyotype differentiation in cells of a garlic clone and its derivative filial plants. Egypt J. Bot., 60:837-853.
Helmey R. K. and Anwar G. M., (2018). Chromosomal aberrations and Ac/Ds transposition in Garlic. Chromosome Botany, 12:72-76.
Hizume M., (1994). Allodiploid nature of Allium wakegi Araki revealed by genomic in situ Hybridization and localization of 5S and 18S rDNAs. Jpn. J. Genet., 69:407-415.
Hizume M., Kondo K., Ge S. and Hong D. Y., (1995). A new locus of 18S rRNA gene in chromosomes of a cultivated clone of Allium sativum in China. Chromosome Inf Serv., 59:26-28.
Hong C. J., Wattanabe H., Etoh T. and Iwai S., (2000). Morphological and karyological comparison of garlic clones between the center of origin and westernmost area of distribution. Mem Fac. Agri. Kagoshima Univ., 36:1-10.
Ipek M. and Simon P. W., (2001). Genetic diversity in garlic (Allium sativum L.) as assessed by amplified fragment length polymorphism (AFLP’s) and isozymes. Hortscience, 36:454.
Irifune K., Hirai K., Zeng R. and Tanaka R., Morikawa H., (1995). Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization in Allium fistulosum. Theor. Appl. Genet., 90:312-316.
Konvicka O. and Levan A., (1972). Chromosome studies in Alliurn sativurn. Hereditas, 72:129-148.
Lallemand J., Messian C. M., Briand F. and Etoh T., (1997). Delimitation of varietal groups in garlic (Allium sativum L.) by morphological, physiological and biochemical characters. In: Burba J. L. & Galmarini C. (Eds.), Proc. I Int. Symp. Edible Alliaceae, Acta Hort., 433:123-132.
Lavania S., (1998). Vetiver: a miracle grass that can serve as a biocontrol measure to mitigate environmental degradation of soils and facilitate poverty alleviation. In: Agrawal S. K., Kaushik J. P., Koul K. K. and Jain A. K. (eds.), Perspectives in Environment APH Publ., New Delhi:117-124.
Lee S. H., Ryu J. A., Do G. S., Seo B. B., Pak J. H., Kim I. S. and Song S. D., (1998). Chromosome analysis by fluorescence in situ hybridization of callus-derived regenerants in Allium cyaneum R. Plant Cell Reports, 18:209-213.
Mahmoud M. A. H., Ata A. M., Anwar G. M., Tawfeek A. R. and Dakhly O. F., (2017). Studies of some cytological features of garlic (Alliium sativum L.) clones cultivated in Egypt. Egypt. J. Plant Breed., 21:800-819.
Maluszynska J. and Heslop-Harrison J. S., (1991). Localization of tandemly-repeated DNA sequences in Arabidopsis thaliana. Plant J. 1:159- 166.
McCollum G. D., (1976). Onion and allies. In: SimmondsNW(ed.) Evolution of Crop Plants. Longman, London p: 186-190.
Osman SA. M., Ata A. M. and Gad El-Hak S. E. N. H., (2007). Morphological, Germination, Bolting and Cytogenetical Characteristics of Fourteen Promising Garlic Genotypes. African Crop Science Conference Proceedings (8):2005-2012.
Ovesn? J., Mitrov? K. and Kucera L., (2015). Garlic (A. sativum L.) Alliinase gene family polymorphism reflects bolting types and cysteine sulphoxides content. BMC Genetics, 16:53-63.
Pich U., Fritsch R. and Schubert I., (1996a). Closely related Allium species (Alliaceae) share a very similar satellite sequence. Plant Syst. Evol., 202:255-264.
Pich U., Fuch J. and Schubert I., (1996b). How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Research, 4:207-213.
Schubert R. R., (1984). G and/or C-bands in plant chromosomes? J. Cell Sci., 71:111-120.
Senula. A. and Keller R. J., (2000). Morphological characterization of a garlic core collection and establishment of a virus-free in vitro gene bank. Allium Improv. Newsletters, 10:3-5.
Seo B. B., Lee S. H. and Mukai Y., (1997). Physical mapping of 5S and 18S-26S ribosomal RNA gene families in Allium victorialis var platyphyllum. Kor. J. Plant Biol., 40:132-137.
Simon P. W. and Jenderek M. M., (2003). Flowering, seed production and the genesis of garlic breeding. Plant Breeding, 32:211-244.
Sumner A. T., (1972). A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res., 75:304-306.
Sun X., Zhu S., Li N., Cheng Y., Zhao J., Qiao X., Lu L., Liu S., Wang Y., Liu C., Li B., Guo W., Gao S., Yang Z., Li F., Zeng Z., Tang Q., Pan Y., Guan M., Zhao J., Lu X., Meng H., Han Z., Gao C., Jiang W., Zhao X., Tian S., Su J., Cheng Z. and Liu T., (2020). A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis. Mol. Plant, 13:1328- 1339.
Verma S. C. and Mittal R. K., (1978). Chromosome variation in common garlic. Cytologia, 43:383- 396.
Woodward P., (1996). Garlic and friends: the history, growth and use of edible Alliums. Hyland House, South Melbourne.
Yüzba?io?lu D., and Unal F., (2004). Karyotyping, c- and NOR banding of Allium sativum L. (Liliaceae) cultivated in Turkey. Pak J. of Botany, 36:343-349.