GENETIC DIVERSITY OF TWO PHENOTYPES OF EGYPTIAN DOMESTIC GEESE Anser anser (AVES: ANATIDAE) BASED ON SSR MARKERS

Authors

  • ANWAAR S. M. ABU SHNAF Department of Zoology, Faculty of Science, Minia University, 61519 El Minia
  • GEHAN M. ANWAR Department of Genetics, Faculty of Agriculture, Minia University, 61519 El Minia

Abstract

Genetic variation within and among domestic whitish grey and white Greylag geese populations collected from Minia, Upper Egypt were examined using ten SSR microsatellite primers. Of these primers, only eight primers produced scorable amplified bands, while TTUCG-1 and APH17 primers generated no ampli-fication products in any of studied geese population. These scorable amplified bands displayed variable polymorphism amongst the whitish grey and white popu-lations. The total number of amplified bands produced by eight primers was 29 bands with an overall mean (3.63 ± 0.89) and ranged from one band with TTUCG-2 and TTUCG-4 primers to eight bands with SFIMU-1 primer. Primers APH11, APH21 and SFIMU-1 revealed 100% polymorphism between geese popula-tions. Cluster analysis of similarity within populations indicated: 1) the existence of two distinct evolutionary clusters corre-sponding to whitish grey and white geese groups and 2) clustering of white popula-tions with the whitish grey population. The average similarity among the two geese phenotypes was nearly similar; this suggests their relatedness to each other. This relationship between the two geese phenotypes strongly supports the previous hypothesis of including the white geese within the genus Anser basically contain-ing the Greylag geese. It is the first time to use SSR markers for identification of Egyptian domestic geese breed.

References

Ahmadi, A. K., G. Rahimi, A. Vafaei and H. Sayyazadeh (2007). Microsatel-lite analysis of genetic diversity in Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) duck populations. International Journal of Poultry Science, 6: 378-382.

Aliczki, K. K. (2007). Examining genetic variability in ancient hungarian goose population with microsatel-lite. PhD. Diss. Debrecen: Univer-sity of Debrecen, Center of Agric. Sci., 150 p.

Andres, K. and E. Kapkowska (2011). Applicability of anatid and galliform microsatellite markers to the genetic diversity studies of domestic geese (Anser anser domesticus): Short report. In BMC Research Notes, 4: 10 p.

AOU (American Ornithologists Union) (1998). Committee on Classifica-tion and Nomenclature (1998): Check-list of North American Birds: The species of birds of North America from the Arctic through Panama, including the West Indies and Hawaiian Islands. 7th Edition. American Ornithol-ogists' Union and Allen Press, Washington, D.C. and Lawrence, Kansas, USA. Ata, A. M., A. M. Nassif, A. E. Abu-Salha and W. M. Fandy (2005). Cytogenetic studies on three spe-cies of domestic birds (Galliformes: Aves), I- Chromo-some morphology and C-banding analysis. Minia J. of Agric. Res. & Develop., 25: 977-1000.

Ata, A. M., A. M. Nassif, A. E. Abu-Salha and W. M. Fandy (2007). Cytogenetic studies on two species of domestic birds (Galliformes, Aves): II-Meiotic behavior. Pro-ceedings of 8th African Crop Sci-ence Society Conference, p. 777-781.

Ata, M. A., A. B. Shahin and S. A. Mohamed (2012). Genetic diversity of local domestic geese in (Egypt-Minia) governorate, using RAPD-PCR and specific 5S primer analysis. In "Minia International Conference for Agriculture and Irrigation in the Nile Basin Countries", Minia, Egypt, 1360-1368.

Ata, A. M., H. Z. Allam, A. E. Abousalha and W. M. Fandy (2017). Karyological studies on some breeds of duck. Minia J. Agric. Res. & Develop., 37: 61-81.

Basha, H. A., W. S. H. Abd El-Naby and H. S. Heikal (2016). Genetic diversity and phylogenetic relationship among three duck breeds and geese using RAPD markers. Adv. Anim. Vet. Sci., 4: 462-467.

Baublys, V., A. Paulauskas and A. Sruoga (2006). Application of microsatel-lite DNA primers for the analysis of the genetic variability of Lithu-anian native goose breeds. Biologija N., 1: 14-17.

Carboneras, C. (1992). Family Anatidae (Ducks, Geese and Swans), p: 536-629. In: Del Hoyo, J., Elliott, A., Sargatal, J. (Eds.): In Handbook of Birds of the World (Vol. 1: Ostrich to Ducks). Lynx Edicions, Barcelona.

Cathey, J. C., J. W. Bickham and J. C. Patton (1998). Introgressive hy-bridization and non-concordant evolutionary history of maternal and paternal lineages in North American deer. Evolution, 52: 1224-1229.

Cramp, S. (1977). The birds of the Western Palearctic. Oxford University Press, Oxford.

Crawford, R. D. (1990). Origin and history of poultry species, p. 1-41. In: Crawford, R. D. (Ed.): Poultry Breeding and Genetics. Elsevier, Amsterdam, Oxford, New York, Tokyo.

Dice, L. R. (1945). Measures of the amount of ecologic association be-tween species. Ecology, 26: 297-302.

Dudley, N. M., K. A. Orvis, J. E. Lebiecki and J. M. Cortina (2006). A meta-analytic investigation of conscien-tiousness in the prediction of job performance: Examining the inter-correlations and the incremental validity of narrow traits. Journal of Applied Psychology, 91: 40-57.

EEAA (Egyptian Environmental Affairs Agency) (1997). Birds known to occur in Egypt. Publication of Na-tional Biodiversity Unit, Cabinet of Ministers, Department of Nature Protection, Arab republic of Egypt.

Fandy, W. M (2017). Genetical and cyto-logical studies on some duck breeds in Egypt. PhD. Fac. of Ag-riculture, Minia Univ.

Fields, R. L. and K. T. Scribner (1997). Isolation and characterization of novel waterfowl microsatellite lo-ci: cross-species cso comparisons and research applications. Mol. Ecol., 6: 160-164.

Fields, L., K. F. Reeve, D. Rosen, A. Varelas, B. J. Adams, J. Belanich and S. A. Hobbie (1997). Using the simultaneous protocol to study equivalence class formation: The facilitating effects of nodal number and size of previously established equivalence classes. J. of the Ex-perimental Analysis of Behavior, 67: 367-389.

GelAnalyzer, version three (2007). Gel analyzer vrs.3 program software for windows. www. Geocities .com/ egygene.

Gravley, M. C., G. K. Sage, J. A. Schmutz and S. L. Talbat (2017). Development of microsatellite loci exhibiting reverse ascertainment bias and a sexing marker for use in Emperor Geese (Chen canagica). Avian Biology Research, 10: 1-10.

Hammer, Ø, D. A. T. Harper and P. D. Ryan (2009). PAST: PAlaeontological Statistics, ver. 1.88. User’s manual.

Huang, Y., J. Tu, X. Cheng, B. Tang, X. Hu, Z. Liu, J. Feng, Y. Lou, L. Lin, K. Xu, Y. Zhao and N. Li (2005). Characterization of 35 novel microsatellite DNA markers from the duck (Ans platyrhynchos) genome and cross-amplification in the birds. Genet. Sel. Evol., 37: 455-475.

Hui-fang, L., S. Qing, Z. Jian and F. Wei (2010). Evaluation of various in-verse docking schemes in multiple targets identification. Journal of Molecular Graphics & Modeling, 29: 326-330. Ismoyowati and D. Purwantini (2011). Genetic variability of bali and alabio ducks on the basis of pheno-typic and microsatellites. Asian J. Poult. Sci., 5: 107-115. IUCN (International Union for Conserva-tion of Nature) (2007). IUCN Red List of Threatened Species. Hun-tingdon Road, Cambridge System, UK.

Johnsgard, P. A. (1961). The taxonomy of the Anatidae: a behavioral analysis. Ibis, 103: 71-85.

Li, H. F., K. W. Chen, N. Yang and W. T. Song (2007). Evaluation of genetic diversity of Chinese native geese revealed by microsatellite markers. In World´s Poultry Science Jour-nal, 63: 381-390.

Liu, W., Z. C. Hou, L. J. Qu, Y. H. Huang, J. F. Yoa, N. Li and N. Yang (2008). Population structure and biodiversity of Chinase indig-enous duck breeds revealed by 15 microsatellite markers. Asian Australas. J. Anim. Sci., 21: 314-319.

Livezey, B. C. (1986). A phylogenetic analysis of recent anseriform genera using morphological characters. Auk, 103: 737-754.

Maak, S., K. Neumann, G. Vonlengerken and R. Gattermann (2000). First seven microsatellites developed for the Pekin duck (Anas platyrhynchos). Anim. Genet., 31: 233.

Maak, S., K. Wimmers, S. Weigend and K. Neumann (2003). Isolation and characterization of 18 microsatel-lites in the Peking duck (Anas platyrhynchos) and their applica-tion in other waterfowl species. Mol. Ecol. Notes, 3: 224-227.

Madge, S. and H. Burn (1988). In Wildfowl: An identification guide to the ducks, geese and swans of the world. Christopher Helm, London.

Mindek, S., Silvia Mindeková, C. Hrnčár, J. H. Weis and J. Gašparík. (2014). Genetic diversity and structure of Slovak domestic goose breeds. In Veterinarija ir Zootechnika, 67: 81-87.

Noreikiene, K., A. G. F. Teacher, G. Madsen and P. Gienapp (2012). Isolation and characterization of 55 novel microsatellite markers for the pink-footed goose (Anser brachyrhynchus). In Conservation Genetics Resources, 2: 423-428.

Salem, H. H., B. A. Ali, T. H. Huang and D. N. Qin (2005). Use of randomly amplified polymorphic DNA (RAPD) markers in poultry re-search. Int. J. Poult. Sci., 4: 804-811.

Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular clon-ing: A Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

Sasazaki, S., K. Itoh, S. Arimitsu, T. Imada, A. Takasuga, H. Nagaishi, S. Takano, H. Mannen and S. Tsuji (2004). Development of breed identification markers derived from AFLP in beef cattle. Meat Sci., 67: 275-280.

Seo, D. W., S. Hasina, N. R. Choi, Y. S. Kim, S. Jin, K. N. Heo, S. D. Jin, and J. H. Lee (2015). Investigation of microsatellite markers for trace-ability and individual discrimina-tion of Korean native ducks. Kore-an J. Poult. Sci., 42: 1-8.

Seo, D., K. M. Southard, J. W. Kim, H. J. Lee, J. Farlow, J. U. Lee, D. B. Litt, T. Haas, A. P. Alivisatos, J. Cheon, et al. (2016). Cell 165, S0092-8674 (16) 30490-1, in press. Published online May, 12.

Shahin, A. A., A. T. Ata and S. A. Abu Shnaf (2014). Karyotype and C-banding pattern of the domestic geese Anser anser populations (Aves: Anatidae) in Egypt. Folia Biologica, 62: 49-58.

Sibley, C. G. (1960). The electrophoretic patterns of avian egg white pro-teins as taxonomic characters. Ibis, 102: 215- 284.

Sibley, C. G., K. W. Corbin and J. H. Haavic (1969). The relationships of the flamingos as indicated by the egg-white proteins and hemoglobins. Condor, 71: 155-179.

Sibley, C. G. (1970). A comparative study of the egg-white proteins of pas-serine birds. Peabody Museum of Natural History Bulletin, 32: 1-131.

Sibley, C. G. and J. E. Ahlquist (1972). A comparative study of the egg-white proteins of non-passerine birds. Peabody Museum of Natural His-tory Bulletin, 39: 1-276.

Simianer, H. (2006). In: Use of Molecular Markers and Other Information for Sampling Germplasm to Create an Animal Gene Bank. RUANE, J. and SONNINO, A. (eds.) The role of biotechnology in exploring and protecting agricultural genetic re-sources. Rome: FAO, p. 81-96.

Sruoga, A., S. Ðvaþas, D. Butkauskas, A. Paulauskas, E. Mozalienë and S. Slavënaitë (2005). Long-term ge-netic investigations background for research on wildfowl populations in the changing environmental conditions. Acta Zool. Lit., 15: 169-172.

Powell, W., G. C. Machray and J. Provan (1996) Polymorphism revealed by simple sequence repeats. Tren. Plant Sci., 1: 215-222

Tu, T., Y. Chen and C. Hwang (2006). Properties of HPC with recycled aggregates. Cem. Concr. Res., 36: 943-950.

Vignal, A., D. Milan, M. San Cristobal and A. Eggen (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evo-lution, 34: 275-305. Weimann, M., A. Vennemann, U. G. Sau-er, K. Wiench, L. Ma-Hock and R. Landsiedel (2016). An alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J. Nanobiotechnol., 14: 16.

Weiß, B. M., K. Poggemann, K. Olek, K. Foerster and K. Hirschenhauser (2008). Isolation and characteriza-tion of microsatellite marker loci in the Greylag goose (Anser anser). Molecular Ecology Re-sources, 8: 1411-1413.

Wójcik, E. and E. Smalec (2007). Description of the Anser anser goose karyotype. Folia biologica (Kraków), 55: 35-40.

Yoon, J. H., S. J. Kang, C. H. Lee and T. K. Oh (2005). Marinicola seohaensis gen. nov., sp. nov., iso-lated from sea water of the Yellow Sea, Korea. Int. J. Syst. Evol. Microbiol., 55: 859-863.

Downloads

Published

2018-09-06

Issue

Section

Articles