INITIAL CLUSTERING OF SOME EGYPTIAN NEMATICIDES Serratia ISOLATES BASED ON THEIR 16SrRNAs GENE SEQUENCES

Authors

  • SAWSAN Y. ELATEEK Department of Genetics, Faculty of Agriculture, Ain Shams Center of Genetic Engineering and Bio- technology (ACGEB), Ain Shams University, Cairo
  • A. B. ABDEL-RAZIK Department of Genetics, Faculty of Agriculture, Ain Shams Center of Genetic Engineering and Bio- technology (ACGEB), Ain Shams University, Cairo
  • S. A. IBRAHIM Department of Genetics, Faculty of Agriculture, Ain Shams Center of Genetic Engineering and Bio- technology (ACGEB), Ain Shams University, Cairo

Abstract

Biocontrol is known to be the safest agriculture practice for pest control in comparison with pesticides. In addition, pests can be very detrimental to crops, destroying them within a few days. One of the pests the farmers have to deal with on a regular basis is nematodes, which can be extremely destructive to seedlings and whole plants. In our study we shed some light on promising bacterial isolates found to belong to Genus Serratia which can be a good candidate for nematode biocontrol. Eight Serratia isolates were collected from tomato-planted Egyptian soil. They were chosen for this study based on their nematicidal effect. DNA isolation, PCR amplification and partial sequence analysis of 16SrRNA gene were performed. They were aligned using ClustalW with similar strains from the NCBI GenBank database, compared with reference strain of Bacillus thuringiensis JN 315886.1 (as a tree root). BLASTn Microbial genome database, based on their 16SrRNA partial gene sequence, were used to identify the isolates to be mostly correlated to Genus Serratia. Phylogenetic analyses were conducted by MEGA7 using neighbor-joining method with 1000 replicates for bootstrap analysis which indicates 99.4-99.8% similarities with the Serratia nematodiphila and Serratia marcescens species.

References

Ajithkumar Ajithkumar B., Iriye V. P., Doi R. Y. and Sakai T. (2003). Spore-forming Serratia marcescens subsp. Sakuensissub sp. nov., isolated from a domestic wastewater treatment tank. Int. J. Syst. Evol. Microbiol., 53:253-258.

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W. and Lipman D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25:3389-3402.

Cheesbrough M. (2000). In: District Laboratory Practice in Tropical countries. Cambridge University Press, 2 Eds. 182-184.

Cho G., Steina M., Brinksa E., Rathjea J., Leeb W., Suhb S. H. and Franza C. M. A. P. (2020). Serratia nevei sp. nov. and Serratia bockelmannii sp. nov., isolated from fresh produce in Germany and reclassification of Serratia marcescenssubsp. sakuensis Ajithkumar et al. 2003 as a later heterotypic synonym of Serratia marcescens subsp. marcescens. Systematic and Applied Microbiology, 43:126055.

Essam A. M., Abdel-Razik A. B., Nassef M. A. and Ibrahim S. A. (2008). Biochemical and molecular genetics identification of some Serratia isolates. Egypt. J. Genet. Cytol., 37: 277-288.

Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39:783-791.

Gerber N. (1975). Prodigiosin-like pigments. CRC Crit Rev. Microbiol., 3:469-485.

Ghyselinck J., Pfeiffer S., Heylen K., Sessitsch A., and De Vos P. (2013). The Effect of Primer Choice and Short Read Sequences on the Outcome of 16SrRNA Gene Based Diversity Studies. PLOS ONE, 8 : e71360.

Harris A. K. P., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J. and G. P. C. Salmond (2004). The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 150:3547-3560.

Hearn W. R., Elson M. K., Williams R. H. and Medina-Castro J. (1970). Prodigiosin [5-(2-pyrryl)-2, 29-dipyrrylmethene] and some substituted prodigiosenes. J. Org. Chem., 35:142-145.

Hejazi A. and Falkiner F. R. (1997). Serratia marcescens. J. Med. Microbiol., 46: 903-912.

Johnson V. W., Pearson J. F., and Jackson T. A. (2001). Formulation of Serratia entomophila for biological control of grass grub. N. Z. Plant Protect. , 54: 125-127.

Kim Y. C., Leveau J., Gardener M., B. B., Pierson E. A., Pierson L. S. and Ryu C.-M. (2011). The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol., 77: 15848-1555.

Kumar S., Stecher G., and Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution., 33:1870-4.

Kwak Y., Khan A. R., and Shin J. H. (2015). Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode. J. Biotechnol., 101 :1-2.

Patil D. C., Patil V. S., Salunke K. B., and Salunkhe B. R. (2012). Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Parasito. Res., 110:1841-1847.

Pham H. N., Ohkusu K., Mishima. N., Noda M., Monir Shah M., Sun X., Hayashi M., and Ezaki T. (2007). Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences Diagn. Microbiol. Infect. Dis., 58:153-161.

Proença D. N. S., Grass C. E., Morais G., and Paula V. (2012). Draft genome sequence of Serratia sp. Strain M24T3, isolated from pinewood disease nematode Bursaphelenchus xylophilus. J. of Bacteriol., 194:3764.

Rahul K. S., Patil C. D., Hemant B., and Patil S. V. (2014). Nematicidal activity of microbial pigment from Serratia marcescens. Natural Product Research., 28:1399-404.

Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425.

Scrascia M., Pazzani C., Valentini F., Oliva M., Russo V., D’Addabbo P. and Porcelli F. (2016). Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Microbiology Open; 5: 883-890.

Tamura K., Nei M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA), 101:11030-11035.

Thompson J. D., Higgins D. G. and Gibson T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research., 22:4673-4680.

Townsend R. J., O.Callaghan M., Johnson V. W., and Jackson T. A. (2003). Compatibility of microbial control agents Serratia entomophila and Beauveria bassiana with selected fertilisers. N. Z. Plant Protect., 56:118-122.

Zhang C. X., Liu J. R., Xu M. X., Sun J., Yang S. Y., An X., Gao G. F., Lin M. S., and Lai R. (2008). Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J. Invertebr. Pathol., 98:153-168.

Zhang C.-X., Yang S.-Y., Ming X. X., Sun J., Liu H., Liu J., Liu H., Kan F., Sun J., Lai R. and Zhang K.-Y. (2009). Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology, 59:1603-1608.

Downloads

Published

2020-08-30

Issue

Section

Articles