CYTOCHROME OXIDASE SUBUNIT I GENE BASED IDENTIFICA- TION OF THE COMMON EGYPTIAN TILAPIINE SPECIES

Authors

  • Y. G. FITEHA Animal Department, Collage of Women, Ain Shams University, Cairo
  • M. MAGDY Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo
  • HAGER T. ELHIFNAWY Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo
  • AMIRA EL- KEREDY Genetics Department, Faculty of Agriculture, Tanta University, Tanta
  • R. A. M. ALI Animal Department, Collage of Women, Ain Shams University, Cairo
  • M. A. RASHED Genetics Department, Faculty of Agriculture, Tanta University, Tanta

Abstract

DNA barcoding has become a massively applied tool for accurate and rapid identification of various taxa using COI gene. The current study aimed to identify different species of Egyptian tilapiine using cytochrome oxidase subunit I (COI) gene. Total seven specimens were sampled, representing three species Oreochromis niloticus, Tilapia zillii and Sarotherodon galilaeus. DNA was extracted, PCR was performed, a conventional assay using gel electrophoresis, purified the amplicons, sequenced and analyzed. This study has validated the efficacy of COI gene for identifying fish species. The Egyptian tilapiine identity was confirmed and stated that this marker is suitable for its molecular identification. Additionally, it was successful to identify closely related species and determine the genetic relationship among them.

References

Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27: 1767-1780.

Excoffier L., Smouse P. E. and Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479-491.

Fitzsimmons K. (2000). Future trends of tilapia aquaculture in the americas future trends of tilapia aquaculture in the Americas. Tilapia Aquaculture in the Americas, 2: 252-264.

Froese R. and Pauly D. (eds) (2006). Species of Sarotherodon in FishBase. October, 2006: 5-10.

Hebert P. D., Ratnasingham S. and De Waard J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270: 96-99.

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., and Thierer T. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649.

Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 6: 111-120.

Li, Y., Y. Cui Gul L., Cao X. and Wang W. (2015). Comparative analysis of different protocols for extraction of DNA from fish scales of Cyprinus carpio, 14: 382-387.

Maranan J. B. D., Basiao Z. U. and Quilang J. P. (2016). DNA barcoding of feral tilapias in Philippine lakes DNA barcoding of feral tilapias in Philippine lakes. Mitochondrial DNA. Part A, 26: 4302-4313. https://doi.org/10.3109/19401736.2015.1089478

Meng X. F., Shi M. I. N. and Chen X. X. (2008). Population genetic structure of Chilo suppressalis (Walker)(Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Molecular Ecology, 17: 2880-2897. https://doi.org/10.1111/j.1365-294X.2008.03792.x

Meyer C. P., and Paulay G. (2005). DNA Barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3: 422. https://doi.org/10.1371/journal.pbio.0030422

Mohammed-Geba K., El-Nab S. E. S. H., Awad E. and Nofal A. I. (2017). DNA Barcoding Identifies a Unique Haplotype of Nile Tilapia Oreochromis niloticus Thriving in Egyptian Freshwater and Brackish Water Lakes. Ecotoxicology and Ecobiology, 2: 172-177.

Nagl S., Tichy H., Mayer W. E., Samonte I. E., McAndrew B. J. and Klein J. (2001). Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 20: 361-374. https://doi.org/10.1006/mpev.2001.0979

Poletto A. B., Ferreira I. A., Cabral-de-Mello D. C., Nakajima R. T., Mazzuchelli J., Ribeiro H. B. and Martins C. (2010). Chromosome differentiation patterns during Cichlid fish evolution. BMC Genetics, 11: 50. https:// doi.org/10.1186/1471-2156-11-50.

Rozas J., Ferrer-Mata A., Sánchez- DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E. and Sánchez-Gracia A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 34: 3299-3302.

Saad Y. M., Mohamed J. S. and El-Domyati F. M. (2019). Molecular phylogeny of mullet fishes using Sox14 and COI gene sequence variations. Research Journal of Biotechnology, 14: 130-146.

Saitou N., and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406-425. Sogbesan O. A., Sanda M. K., Ja’afar J. N. and Adedeji H. A. (2017). DNA Barcoding of Tilapia species (Pisces: Cichlidae) from North-Eastern Nigeria. J. Biotechnol Biomater, 7: 1-4. https://doi.org/10.4172/2155-952X.1000277

Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. (2018). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729.

Wu L., and Yang J. (2012). Identifications of captive and wild tilapia species existing in Hawaii by Mitochondrial DNA control region sequence. PLoS ONE, 7: 1-9. https://doi.org/10.1371/journal.pone.0051731

Downloads

Published

2020-08-30

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>