AFLP-BASED EVALUATION FOR TREE PRODUCTION OF EL- SHEIKH ZEWAIED PEACH CULTIVAR "SINAWI" (Prunus persica L.) IN NORTH SINAI, EGYPT

Authors

  • WALLA SAIF - Plant Production Department, Faculty of Environmental Agricultural Sciences, Arish University (AU), El-Arish, North Sinai - Egyptian Deserts Gene Bank, Desert Research Center (DRC), Cairo
  • M. MAGDY Genetics Department, Faculty of Agriculture, Ain Shams University (ASU), Cairo
  • M. H. AMAR Egyptian Deserts Gene Bank, Desert Research Center (DRC), Cairo
  • M. A. NAGATY Plant Production Department, Faculty of Environmental Agricultural Sciences, Arish University (AU), El-Arish, North Sinai

Abstract

Tree production considered the most economically important trait in Prunus persica that can be used directly to evaluate the overall tree performance. The genetic variability was assessed using fluorescently labelled AFLP-based genome scans to capture the loci under selection that are correlated to the production limitation beyond the environmental reasons within the cultivar Sinawi of P. persica L. Regression linear model defined the dependence of tree production on the number of side branches and a number of flowers as a direct indicator of tree production. A total of 801 F-AFLP polymorphic amplicons were scored with unbiased diversity (uHe) of 0.258, which reflects a low genetic pool from the sampled within locations. PCoA (Principal Coordinate Analysis) and STRUCTURE analysis showed a tendency to three sub-populations. Out of 801 F-AFLP loci, three outlier loci were identified as a putatively positive outlier to tree production trait. The statistical correlation of the Euclidean distance matrix between the three outlier's loci to the tree production trait found to exhibit increased differentiation among locations along with a decreased diversity within locations, prove their potential to be utilized as molecular genetic markers linkage to tree production in Sinawi cv.

References

Arus, P., I. Verde., B. Sosinski., T. Zhebentyayeva and A. G. Abbott (2012). The peach genome. Tree Genetics and Genomes, 8: 531-547.

Badenes, M. L., Fernández I. Martí A., G. Ríos and M. J. Rubio-Cabetas (2016). Application of genomic technologies to the breeding of trees. Frontiers in Genetics, 7, 198:1-13.

Beaumont, M. A., and D. J. Balding (2004). Identifying adaptive genetic divergence among populations from genome scans. Molecular ecology, 13: 969-980.

Blenda, A. V., I. Verde, L. L. Georgi, G. L. Reighard, S. D. Forrest, M. Muñoz-Torres, W. V. Baird and A. Abbott (2007). Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genetics and Genomes, 3: 341-350.

Bonin, A., P. Taberlet, C. Miaud and F. Pompanon (2006). Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Molecular Biology and Evolution, 23: 773-783.

Bouhadida, M., J. P. Martín, G. Eremin, J. Pinochet, M. A. Moreno and Y. Gogorcena (2007). Chloroplast DNA diversity in Prunus and its implication on phylogenetic relationships. J. Amer. Soc. Hort. Sci. 132: 670-679.

Byrne, D. H., M. B. Raseira, D. Bassi, M. C. Piagnani, K. Gasic, G. L. Reighard, M. A. Moreno and S. Pérez (2012). Peach. In Fruit breeding. Springer, Boston, MA, p. 505- 569.

Caballero, A. and A. G. Dorado (2013). Allelic diversity and its implica- tions for the rate of adaptation. Genetics, 195: 1373-1384.

Cantín, C. M., C. H. Crisosto, E. A. Ogundiwin, T. Gradziel, J. Torrents, M. A. Moreno and Y. Gogorcena (2010). Chilling injury susceptibility in an intra-specific peach (Prunus persica L. Bastch) progeny. Postharvest Biology and Technology, 58: 79-87.

Cao, K., Z. Zhou, Q. Wang, J. Guo, P. Zhao, G. Zhu, W. Fang, C. Chen, X. Wang, X. Wang and Z. Tian (2016). Genome-wide association study of 12 agronomic traits in peach. Nature Communications, 7: 132-146.

Dirlewanger, E., P. Cosson, K. Boudehri, C. Renaud, G. Capdeville, Y. Tauzin, F. Laigret, and A. Moing (2006). Development of a second- generation genetic linkage map for peach (Prunus persica L. Batsch) and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 3: 1-13.

Dirlewanger, E., P. Cosson, M. Tavaud, M. Aranzana, C. Poizat, A. Zanetto, P. Arús and F. Laigret (2002). Development of microsatellite markers in peach (P. persica L. Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet., 105: 127-138.

El-Kosary, S., M. A. Abdel-Mohsen, S. El-Merghany and A. M. Badran (2013). Enhancing the productivity of early grand peaches under Northern Sinai conditions via supplemental irrigation and organic fertilization. Journal of Horticultural Science and Ornamental Plants, 5: 77-88.

FAOSTAT (2016). FAO Statistics Agri- culture Database. http://faostat.fao.org g.Feng, X. J., G. F. Jiang and Z. Fan (2015). Identification of outliers in a ge- nomic scan for selection along environmental gradients in the bam- boo locust, Ceracris kiangsu. Scientific reports, 5: 1-13 DOi: 10.1038/srep13758.

Hancock, J. F., R. Scorza and G. A. Lobos (2008). In Peaches (Temp Fruit Cr Breed). Chapter 9, Springer Neth- erlands: 265-298.

Hartl, D. L. and A. G. Clark (1997). Principles of population genetics. 3rd edition. Sunderland (MA): Sinauer Associates.

Herrera, C. M. and P. Bazaga (2008). Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Molecular Ecology, 17: 5378-5390.

Li, T., J. Liu, Y. Xie, Q. Wang and F. Meng (2014). Analysis of genetic diversity in Prunus mira Koehne ex Sargent populations using AFLP markers. Plant Systematics and Evolution, 300: 475-482.

Magdy, M., O. Werner, S. F. McDaniel, B. Goffinet and R. M. Ros (2016). Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. Plant Biol- ogy, 18: 280-288.

Manel, S., S. Joost, B. K. Epperson, R. Holderegger, A. Storfer., M.S. Rosenberg., K. T. Scribner, A. Bo- nin and M. J. Fortin (2010). Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19: 3760-3772.

Meudt, H. M. and A. C. Clarke (2007). Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science, 12: 106-117.

Meyer, C. L., R. Vitalis, P. Saumitou- Laprade and V. Castric (2009). Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Molecular Ecology, 18: 2050-2062.

Mueller, U. G. and L. L. Wolfenbarger (1999). AFLP genotyping and fingerprinting. Trends in Ecology and Evolution, 14: 389-394.

Nagaty, A. M., A. H. Belal, M. D. El- Deeb, M. M. Sourour and E. A. Metry (2007). Production of genetically modified peach (P. persica L. Batsch) El-Sheikh Zewaied cultivar plants. Journal of Applied Sciences Research, 3: 1600-1608.

Paris, M., S. Boyer, A. Bonin, A. Collado, J. P. David and L. Despres (2010). Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Molecular Ecology, 19: 325-337.

Poncet, B. N., D. Herrmann, F. Gugerli, P. Taberlet, R. Holderegger, L. Gielly, D. Rioux, W. Thuiller, S. Aubert and S. Manel (2010). Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Molecular Ecology, 19: 2896-2907.

Quilot, B., B. H. Wu, J. Kervella, M. Génard, M. Foulongne and K. Moreau (2004). QTL analysis of quali- ty traits in an advanced backcross between P. persica cultivars and the wild relative species P. davidiana. Theor. Appl. Genet., 109: 884-897.

Roesti, M., W. Salzburger, and D. Berner (2012). Uninformative polymorphisms bias genome scans for signatures of selection. BMC Evolutionary Biology, 12: 1 -7.

Rossi, M., E. Bitocchi, E. Bellucci, L. Nanni, D. Rau, G. Attene and R. Papa (2009). Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evolutionary Applications, 2: 504-522.

Schlotterer, C. (2003). Hitchhiking mapping-functional genomics from the population genetics perspective. Trends in Genetics, 19: 32-38.

Schlueter, P. M. and S. A. Harris (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molecular Ecology Notes, 6: 569-572.

Velasco, D., J. Hough, M. Aradhya and J. Rossibarra (2016). Evolutionary genomics of peach and almond domestication. G3, 6: 3985-3993.

Verde, I., M. Lauria, M. T. Dettori, E. Vendramin, C. Balconi, S. Micali, Y. Wang, H. M. T. G. Cipriani, R. Testolin, M. Motto and R. Quarta (2005). Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)] × P. ferganensis BC1linkage map: saturation and coverage improvement. Theor. Appl. Genet., 111: 1013-1021.

Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. V. D. Lee, M. Hornes, A. Friters, J. Pot., J. Paleman, M. Kuiper and M. Zabeau (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.

Wang, T., G. Chen, Q. Zan, C. Wang and Y. Su (2012). AFLP genome scan to detect genetic structure and can- didate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS One, 7: 1-15.

White, T. J., T. Bruns, S. Lee and J. W. Taylor (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A guide to methods and applications edited by: Innis, M. A., Gelfand, D. H., Sninsky J. J., White T. J. New York: Academic Press Inc, 315- 322.

Yamamoto, T. and S. Terakami (2016). Genomics of pear and other Rosaceae fruit trees. Breeding Science, 66: 148-159.

Yamamoto, T., M. Yamaguchi and T. Hayashi (2005). An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. Journal of The Japanese Society for Horticul- tural Science, 74: 204-213.

Yang, A. H., N. Wei, P. W. Fritsch and X. H. Yao (2016a). AFLP genome scanning reveals divergent selection in natural populations of Liriodendron Chinense (magnoliaceae) along a latitudinal transect. Frontiers in plant science, 698: 1-15.

Yang, S., N. Guo and H. Ge (2016b). Morphological and AFLP-based genetic diversity in Rosa platyacantha population in eastern Tianshan mountains of northwestern China. Horticultural Plant Journal, 2: 55-60.

Yoon, J., D. Liu, W. Song, W. Liu, A. Zhang and S. Li (2006). Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. Journal of the American Society for Horticultural Science, 131: 513-521.

Zhang, Q., R. Jia, C. Meng, C. Ti and Y. Wang (2015). Diversity and population structure of a dominant deciduous tree based on morphological and genetic data. AoB Plants, 7: 1-13.

Downloads

Published

2019-08-04

Issue

Section

Articles

Most read articles by the same author(s)