MARKER-ASSISTED SELECTION FOR YIELD AND QUALITY TRAITS IN SOME GRAPE CULTIVARS (Vitis vinifera L.)

Authors

  • O. M. SALEH National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt Department of Biotechnology, Faculty of Applied Medical Science, Taif University, Turrabah, KSA
  • AMIRA H. EL SHONY Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
  • EMAN M. FAHMY Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
  • NADIA M. MANSOUR Horticultural Research Institute, Agricultural Research Center (ARC), Giza, Egypt
  • FATTHY M. ABDEL-TAWAB Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo

Abstract

The objectives of this study were to develop molecular characterization for 11 grape genotypes and rootstocks using RAPD, SSRs and ISSRs analyses and to elucidate some molecular markers associated with some quality and yield-related traits.
RAPD analysis for the ten genotypes utilizing nine random 10-mer primers exhibited a total number of 78 fragments. All primers exhibited high levels of polymorphism (100%) and the number of bands for each primer ranged from 5 to 12. The dendrogram based on RAPD-PCR analysis divided the ten genotypes into two main clusters; cluster 1 included four genotypes and cluster 2 comprised the rest of the genotypes. Cultivar Crimson and rootstock Harmony and also rootstocks Harmony and Rogiri were closely related (79.5%), while Bezelanza and Rogiri were remotely related (44.9%).
SSRs analysis for the 11 genotypes utilizing 7 primer pairs showed a total number of 37 bands and the total number of bands for each primer ranged from 2 to 10. Genetic similarity among the 11 grape genotypes showed that the closest relationship was recorded between Early-superior and Bezelanza (similarity matrix 94.6%), on the other hand, the lowest similarity was observed between Crimson and Freedom (40.5%).
ISSRs analysis for ten genotypes utilizing 4 primers which exhibited a total number of 45 bands and the number of bands for each primer ranged from 8 to 14. The genetic similarity among the ten grape genotypes based on ISSRs indicated a closest relationship between Banaty and Early-superior cultivars (75.6%), the lowest similarity was observed between Bezelanza cultivar and Rogiri rootstock (40.0%)
The combined data of RAPD-PCR and ISSRs-PCR showed that the genetic similarity matrix between Harmony and Poulson rootstocks was 75.6%, while the lowest similarity index (43.1%) was observed between Bezelanza cultivar and Rogiri rootstock.
In general, the molecular genetic studies of the 11 grape genotypes proved to be effective tools for the identification of these genotypes. In aaddition, such studies provided some molecular markers associated with some economically important traits in grape vine.

References

Abdel-Tawab, F. M., M. A. Rashed, A. M. Hewedy, S. H. Abdel-Aziz and Aziza M. Hassanein (2003). Molecular fingerprinting of ten tomato cultivars (Lycopersicon esculentum Mill). Egypt. J. Genet. Cytol., 32: 101-117.

Abdel-Tawab, F. M., I. A. Hussein, A. H. Atta and M. H. Amar (2004). Development of molecular genetic fingerprints in twenty olive cultivars (Olea europea). Egypt. J. Genet. Cytol., 33: 131-141.

Arnold, C., M. Rossetto, J. McNally and R. J. Henry (2002). The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Viao ceae. American J. Botany, 89: 22-28.

Bachmann, K. (1994). Molecular markers in plant ecology. New Phytol., 126: 403-418.

Badr, A., H. I. S. Ahmed, M. Hamouda, M. Halawa and M. A. Elhiti (2014). Variation in growth, yield and molecular genetic diversity of M2 plants of cowpea following exposure to gamma radiation. Life Science J., 11: 10-19.

Bergamini, C., M. F. Cardone, A. Anaclerio, R. Perniola, A. Pichierri, R. Genghi, V. Alba, L. R. Forleo, A. R. Caputo, C. Montemurro, A. Blanco and D. Antonacci (2013). Validation Assay of p3_VvAGL11 Marker in a Wide Range of Genetic Background for Early Selection of Stenospermocarpy in Vitis vinifera L. Mol. Biotechnol., 54: 1021-1030.

Bringhurst, R. S., S. Arulser Kar, J. F. Hancock and J. R. Victor Voth (1981). Electrophoretic characterization of strawberry cultivars. J. Amer. Soc. Horti. Sci., 106: 684-687.

Carreno, E., M. A. Lopez, M. Labra, D. Rivera, J. Sancha, R. Ocete and F. Martinezde-Toda (2004). Genetic relationship between some Spanish Vitis vinifera L. subsp. sativa cultivars and wild grapevine populations (Vitis vinifera L. subsp. silvestris (Gmelin) Hegi: a preliminary study. Plant Genetic Resources Newsletter, 137: 42-45.

Choudhary, R. S., V. S. Zagade, Maboodurrahman, G. D. Khalakar and N. K. Singh (2014). ISSR based genotypic differentiation of grape (Vitis vinifera L.). The Bio Scan, 9: 823-828.

Dhyani, P., A. Bahukhandi, A. K. Jugran, I. D. Bhatt, R. S. Rawal and V. Pande (2015). Inter Simple Sequence Repeat (ISSR) markers based genetic characterization of selected Delicious group of apple cultivars. International J. Advanced Research, 3: 591-598.

Essadki, M., N. Ouazzani, R. Lumaret and M. Moumni (2006). ISSR variation in olive-tree cultivars from Morocco and other western countries of the Mediterranean Basin. Genetic. Resources and Crop Evolution, 53: 475-482.

Herrera, R., V. Cares, M. J. Wilkinson and P. D. S. Caligari (2002). Characterization of genetic variation between Vitis vinifera cultivars from central Chile using RAPD and Inter Simple Sequence Repeat markers. Euphytica, 124: 139-145.

Ibanez, J., M. T. De Andres, A. Molino and J. Borrego (2003). Genetic mapping of grapevine (Vitis vinifera) applied to detection of QTL’s for seedbssness and berry weight. Theor. Appl. Genet., 109: 780-795.

Lin, H. and M. A. Walker (1998). Identifying grape rootstocks with simple sequence repeat (SSR) DNA markers. Am. J. Enol. Vitic., 49: 403-407.

Lodhi, M. A., N. F. Weeden and B. I. Reisch (1997). Characterization of RAPD markers in Vitis. Vitis, 36: 133-140.

Lombardi, M., M. Materne, N. O. I. Cogan, M. Rodda, H. D. Daetwyler, A. T. Slater, J. W Forster and S. Kaur (2014). Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genetics, 15:150-159.

Merdinoglu, D., G. Butterlin, L. Gevilacque, V. Chiquet, A. Francoise, A. Blondon and S. Decroocq (2005). Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Molecular Breeding, 15: 349-366.

Miaja, M. L. R. Vallania, R. Caramiello and A. Akkak (2004). Use of RAPD markers to identify fruit color in grapevine: first results. Acta Horticulturae, 640: 249-252.

Michelmore, R. W., I. Psaran and R. V. Kesseli (1991). Identification of markers linked to disease-resistance genes by bulked segregate analyses. A rapid method to detect markers in specific region by using segregating population. Proc. Nat. Acad. Sci., 88: 9828-9832.

Moravcova, K., M. Baranek and M. Pidra (2004). The use of RAPD markers for differentiation of grapevine varieties registered in the Czech Republic. Zahradnictvi Horticultural Science, 31: 96-101.

Mullins, G. M. G., A. Bouquet and L. W. Williams (1992). Biology of the Grapevine. Cambridge Univ. Press.

Olien, C. (1990). The muscadine grape: botany, viticulture, history and current industry. Horticience, 25: 732-739.

Pasquale, D. F. M. Siragusa, L. Abbate, N. Tusa, C. D. Pasquale and G. Alonzo (2006). Characterization of five sour orange clones through molecular markers and feal essential oils analysis. Sci. Horti., 109: 54-59.

Reisch, B. I. (1998). Molecular markers-the foundation for grapevine genetic mapping. DNA fingerprinting and genomics. Genetic and Breeding, 6-10.

Sambrook, J., E. F. Fritch and T. Maniatis (1989). Molecular cloning a laboratory manual. Cold Spring Harbore laboratory press.

Sefc, K. M., F. Regner, J. Glössl and H. Steinkellner (1998). Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis, 37:15-20.

Sefc, K. M., F. Regner, E. Turetschek, J. Glossignd and H. Steinkellner (1999). Identification of microsatellite sequence in Vitis riparia and their applicability for genotyping of different vitis species. Genome, 42: 367-373.

Shahlaei, A., S. Torabi and M. Khosroshahli (2014). Efficiacy of SCoT and ISSR markers in assessment of tomato (Lycopersicum esculintum Mill.) genetic diversity. International J. of Biosciences, 5: 14-22.

Stavrakakis, M. N., K. Biniari and P. Hatzopoulos (1997). Identification and discrimination of eight Greek grape cultivars (Vitis vinifera L.) by random amplified polymorphic DNA markers. Vitis. 36: 175-178.

This, P., T. Lacombe and M. R. Thomas (2006). Historical origins and genetic diversity of wine grapes. Trends Genet., 22: 511-519.

Ye, G. N., G. S. Oylemezoglu, N. F. Weeden, W. F. Lamboy, R. M. Pool and B. I. Reisch (1998). Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting. Vitis, 37: 33-38.

Zietkiewicz, E., A. Rafalski and D. Labuda (1993). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 118-176.

Downloads

Published

2016-01-12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>