EVALUATION OF SIX SUGARCANE GENOTYPES UNDER THE EGYPTIAN CONDITIONS USING INTER SIMPLE SEQUENCE REPEAT (ISSR) TECHNIQUE
Abstract
Sugarcane breeding is the gate to obtain new varieties with good quality that can stand to the different changes which face that essential crop. This study was conducted to determine the relationship among six genotypes bred under the Egyptian environment using Inter Simple Sequence Repeat (ISSR) technique at Giza experimental station (30.022310 N, 31.207910 E). The six genotypes were G.T.54-9 (the commercial variety), G.2003-47 (G.3), G.2004-27 (G.4) were new varieties, G.99-103, G.2007-61 were promising clones and G.84-47 variety. The total number of bands produced by the eleven primers, used in this study, were 117 monomorphic bands (51%) and polymorphic bands (66%), with a unique one (61.2 %). The dendogram (tree) produced from UPGMA cluster analysis for the six genotypes were grouped at similarity coefficient of 0.79. At this level, it was divided into two main groups. The 1st one included G.84-47 and GT.54-9 cultivar, started at a distance 0.845. Meanwhile, the 2nd group was divided into two sub groups. The 1st sub group started at a distance of 0.830 and included the two genotypes G.4 and G.99-103. The 2nd sub group started at a distance of 0.890 and included two genotypes G.3 and G.2007-61. The vegetative and chemical analyses emphasized the genetic relations between the studied genotypes. The G.3 and G.4 new varieties surpassed the tested genotypes in most traits under study.
References
CoHort Software. (1998). CoStat version 6.400. 798 lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.
Deren C.W. (1995). Genetic base of U.S. mainland sugarcane. Crop Sci., 35 (4):1195-1199. https://doi.org/10.2135/cropsci1995.0011183X003500040047x
Duncan D. B. (1955). Multiple range and multiple F tests. Biometrics. 11: 1-42.
Edme S. J., Miller J. D., Glaz B.; Tai P. Y. P. and Comstock J. C. (2005). Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci., 45 (1): 92-97. https://doi.org/10.2135/cropsci2005.0092
Erskine W. and Muehlbauer F. J., (1991). Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor. Appl. Gen. (1): 119-125. https://doi.org/10.1007/bf00229234
Forough J. F., Avinash T. and Rachayya D., (2017). Analysis of Molecular Assortment in Sugarcane Varieties using RAPD and ISSR markers. Res. J. Biotech., (12): 20-28.
Hont A. D., Rao P. S., Feldmann P., Grivet L., F. N. Islam, Taylor P. and Glaszmann J. C., (1995). Identification and Characterisation of Sugarcane Intergeneric Hybrids, Saccharum officinarum × Erianthus arundinaceus, with Molecular Markers and DNA in Situ Hybridisation. Theor. Appl. Gen. (2): 320-326. doi:10.1007/BF00220894
Jackson P. A., (2005). Breeding for improved sugar content in sugarcane. Field Crops Res., 92:277-290.
Li H., Ca S. Y., Niu J., Yuan P., Zhao D. and Zhang F., (2015). The types and application of molecular markers in the study of pomegranate germplasm resources. Acta Horticulturae 1089: 127-132. https://doi.org/10.17660/ActaHortic.2015.1089.14
Lima M.L. A., Garcia A. A. F., OliveiraK. M., Matsuoka S., Arizono H., de Souza Jr C. L. and de Souza.A. P., (2002). Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (saccharum spp.). Theor. Appl. Gen. 104 (1): 30-38. https://doi.org/10.1007/s001220200003
Nayak S., Naik P. K., Acharya L., Mukherjee A. K., Panda P. C. and Das P., (2005). Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular Sugar Zeitschrift fur Naturforschung C-A Journal of Biosciences. 60 (5-6): 485-492. https://doi.org/10.1515/znc-2005-5-618
Parida S. K., Sanjay K. K., Sunita K., Dalal V., Hemaprabha G., Selvi A., Pandit A., Singh A., Gaikwad K., T. Sharma R., Srivastava P. S., Singh N. K. and Mohapatra T., (2009). Informative Genomic Microsatellite Markers for Efficient Genotyping Applications in Sugarcane, Theor. Appl. Gen. 118 (2): 327-338. doi:10.1007/s00122-008-0902-4.
Praveen K., M. Hemanth Kumar, Umamaheshwari A., Reddy D. M., Sudhakar P., Munikumar M., Pradhan D. and Sabita N., (2015). SGDB: A sugarcane germplasm database. Sugar Tech 17(2): 150-155. https://doi.org/10.1007/s12355-014-0307-4
Sneath P. H. A. and Sokal R. B., (1973). Numerical taxonomy. The principles and practice of numerical classification. San Francisco: W. H. Freeman. Tazeb A., Haileselassie T. and Tesfaye K., (2017). Molecular characterization of introduced sugarcane genotypes in Ethiopia using inter simple sequence repeat (ISSR) molecular markers. Afr. J. Biotechnol. 16(10: 434-449. DOI: 10.5897/AJB2016. 15601
Wang Z. T., Su W. H., Que Y. X., L. Xu P., Zhang H. and Luo J.., (2016). Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models. Chinese Journal of Eco-Agriculture, 24(6): 790-800. https://doi.org/10.13930/j.cnki.cjea.151284
Wang Z., Pan Y., Luo J., You Q., Xu L., Zhang H. Que Y., (2020). SSR-Based Genetic Identity of Sugarcane Clones and its Potential Application in Breeding and Variety Extension Sugar Tech. 22(3): 367-378. https://doi.org/10.1007/s12355-019-00788-9
You Q., Pan Y. B., Xu L. P., Gao S. W., Wang Q. N., Su Y. C., Yang Y. Q., Wu Q. B., Zhou D. G. and Que Y. X., (2016). Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform. Sugar Tech. 18(4): 380-390. https://doi.org/10.1007/s12355-015-0395-9
Downloads
Published
Versions
- 2022-05-07 (2)
- 2022-04-24 (1)