DETECTION OF FIBER QUALITY GENES IN SOME PLANTS BELONGING TO FAMILY Asclepiadaceae

Authors

  • EL-SHAIMAA S. EL-DEMERDASH Genetic and Cytology Unit, Genetic Resources Department, Desert Research Center (DRC), 1 Mathaf El-Matariya Street, El-Matariya B.O.P 11753 El-Matariya, Cairo
  • INJY M. MASOUD Genetic and Cytology Unit, Genetic Resources Department, Desert Research Center (DRC), 1 Mathaf El-Matariya Street, El-Matariya B.O.P 11753 El-Matariya, Cairo
  • MOKHTAR SAID RIZK Genetic and Cytology Unit, Genetic Resources Department, Desert Research Center (DRC), 1 Mathaf El-Matariya Street, El-Matariya B.O.P 11753 El-Matariya, Cairo

Abstract

Two fiber plant species belonging to the family Asclipidaceae; Calotropis procera and pergularia daemia were chosen for the present study. Gene expression analysis of fiber quality genes (EXPA3 and EXPA4) was achieved using quantitative real-time PCR (qRT-PCR) in two plant parts (leaf and stem) in C. procera showing a high expression level of EXPA3 gene compared to the EXPA4 gene. Moreover, the expression level in stems is higher than that in leaves regardless of plant species. Detection of genes (EXPA3) was carried out by PCR reaction producing band in Calotropis procera with sizes 850bp but for EXPA4 gene PCR product in C. procera and Pergularia daemia with sizes 450bp. The obtained fragments were sequenced and phylogenetic trees based on amino acid sequences using Mega 7.0 software were accomplished. The results revealed the close relatedness of CpEXPA3 understudy to C. procera (ABO30977.1) was recorded in the National Center for Biotechnology Information (NCBI) database. In addition, the close relatedness of CpEXPA4 understudy to CpEXPA4 in C. procera (EF434784.2) was recorded in the NCBI database. The present study recommends conducting more researches on fiber crops due to their economic importance. Furthermore, their genetic potentialities which enable them to be good genetic resources and alternatives to economically important fiber crops. Moreover, For Guidance to domestication and cultivation of inexpensive fiber resources that are tolerant to various environmental stresses and do not exhaust the farmlands.

References

Abd El Twab F. M., Abo Doma A., Amar M.H. and Rizk M. S., (2018). Comparative omics analysis for some yield-related traits associated with salt tolerance in sunflower (Helianthus annuus L.). Egypt. J. Genet. Cytol., 47:345-365.

Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J., (1990). Basic local alignment search tool. Journal of Molecular Biology, 215: 403-410.

APG IV (2016). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Botanical Journal of the Linnean Society, 181: 1-20.

Arpat A. B., Waugh M., Sullivan J. P., Gonzales M., Frisch D., Main D., Wood T., Leslie A., Wing R. A. and Wilkins T. A., (2004). Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol., 54: 911-929.

Bajwa K. S., Shahid A. A., Rao A. Q., kiani M. S., Ashraf A., Dahab A. A., Bakhsh A., Latif A., Khan. Azmat U., Puspito A. N., Aftab Asiya, Bashir A. and Husnain T., (2013). Expression of Calotropis procera Expansin gene CpEXPA3 enhances cotton fiber strength. Australian Journal of Crop Science, 7(2): 206.

Batello C., Marzot M. and Touré A. H., (2004). The future is an ancient lake: traditional knowledge, biodiversity and genetic resources for food and agriculture in Lake Chad Basin ecosystems. FAO Interde-partmental Working Group on biological diversity for food and agriculture, Rome.

Cheema H. M. N., Bashir A., Khatoon A., Iqbal N., Zafar Y. and Malik K. A., (2010). Molecular characterization and transcriptome profiling of expansin genes isolated from Calotropis procera fibers. Electron J. Biotechnol., 13(6):10-11.

Coêlho M. R. V., Rivas R. Ferreira-Neto J. R. C., Pandolfi V., Bezerra-Neto J. P., Benko-Iseppon A. M. and Santos M. G. (2019). Reference genes selection for Calotropis procera under different salt stress conditions. PLoS ONE, 14(4): e0215729. https://doi.org/10.1371/journal.pone.0215729

Ecocrop (2011). Ecocrop database. FAO. Eisikowitch D., (1986). Morphoecological aspects on the pollination of Calotropis procera (Asclepiadaceae) in Israel. Plant Syst. Evol., 152:185-194.

EL-Shimy G. H., Abd AL-Sadek M. S. and Abd EL-Haleem R. A., (2015). Comparative analysis of yield and anatomical manifestations of six flax genotypes. Egypt. J. Agric. Res., 93 (1): 67-84.

Iqbal N., Khatoon A., Asif M. and Bashir A., (2016). Expression analysis of fiber related genes in cotton (Gossypium hirsutum L.) through real time PCR. Pak. J. Bot., 48(3): 1099-1106.

Iqbal Z., Lateef M., Jabbar A., Muhammad G. and Khan M. N., (2005). Anthelmintic activity of Calotropis procera (Ait.) Ait. F. flowers in sheep. J. Ethnopharm., 102 (2): 256-261.

Karthik T. and Murugan R., (2013). Characterization and analysis of lignocellulosic seed fiber from Pergularia daemia plant for textile applications. Fibers and Polymers., 14(3): 465-472.

Khatoon A., Iqbal Nadia, Asif M., Cheema H. M. N., Saeed M. and Bashir A., (2018). Comparative analysis of fiber morphogenesis genes of Calotropis procera and Gossypium hirsutum. Int. J Agric. Biol., 20, 288-296.

Kiew R., (2001). Calotropis procera (Aiton) Aiton f. In: van Valkenburg, J. L. C. H. & Bunyapraphatsara, N. (Editors). Plant Resources of South-East Asia No. 12 (2): Medicinal and poisonous plants 2. Backhuys Publishers, Leiden, Netherlands. pp. 133-138.

Kumar S., Stecher G. and Tamura K., (2016). MEGA 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution., 33:1870-1874.

Lewis W. H., (1986). In: The useful plants of west tropical Africa. Economic Botany., 40:176.

Livak K. J. and Schmittgen T. D., (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408.

Londe L.C. N. and Pinho E. F. M., (2017). Gene expression of the Expansin family in silk Cotton under water stress. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(3):24-31.

Lu Y., Xie L. and Chen J., (2012). A novel procedure for absolute realtime quantification of gene expression patterns. Plant Methods, 8: 1-11.

Lv L. M., Zuo D. Y., Wang X. F., Cheng H. L.,. Zhang P., Wang Q. L., Song G. L. and Ma Z. Y., (2020). Genome-wide identification of the Expansin gene family reveals that Expansin genes are involved in fiber cell growth in cotton. BMC Plant Biology, 20:1-13.

Maji S, Mehrotra R. and Mehrotra S., (2013). Extraction of high quality cellulose from the stem of Calotropis procera. South Asian J Exp., Biol., 3(3): 113-118.

Mei W., Qin, Song Y., Li W. J. and Zhu Y., (2009). Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. Journal of Genetic and Genomics, 36(3):141-50.

O'Connor C., (1993). Traditional cheese-making in West Africa. Dairy Technology Paper, 3 (2): 14-18.

Orwa C., Mutua A., Kindt R., Jamnadass R. and Anthony S., (2009). Agro-forestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.

Parsons W. T. and Cuthbertson E. G., (2001). In: Noxious weeds of Australia. CSIRO Publishing, 712 pp.

Raghavan R., (1957). Chromosome numbers in Indian medicinal plants. Plant Sci., 45:294-298.

Ramawat K. G. and Ahuja M. R., (2016). In: Fiber plants, sustainable development and biodiversity., Chapter 1: (1-13). Book ISBN: 978-3-319-44569-4.

Rashwan E., Mousa A., EL-Sabagh A. and barutçular C., (2016). Yield and quality traits of some flax cultivars as influenced by different irrigation intervals. Journal of Agricultural Science., 8. 10.5539/jas.v8n10p226.

Schmittgen T. D. and Livak K. J., (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 3(6): 1101-1108.

Sinha S. and Mondal A. K., (2017). A phylogenetic study of floral morphology of some members of Asclepiadaceae R. Br. Annals of Plant Sciences, 6.02:1546-1559. 10.21746/aps.2017.02.004.

Yaqoob A., Shahid A. A., Salisu I. B., Shakoor S. Usmaan M., Shad M., and Rao A. Q., (2020). Comparative analysis of Constitutive and fiber-specific promoters under the expression pattern of Expansin gene in transgenic Cotton. PLoS ONE, 15(3), e0230519.

Zhang M. F., Liu Q. and Jia G. X., (2016). Reference gene selection for gene expression studies in lily using quantitative real-time PCR. Genetics and Molecular Research GMR., 15(2): 1-14.

Downloads

Published

2021-10-11

Issue

Section

Articles