MOLECULAR IDENTIFICATION AND PHYLOGENETIC RELATIONSHIPS OF Origanum syriacum L. AND Origanum vulgare L. US- ING CHLOROPLAST rbcL AND matK BARCODES GENES

Authors

  • M. ZOELFAKAR Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo
  • S. AHMED Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo
  • EL-SHAIMAA S. EL-DEMERDASH Genetic Resources Department, Desert Research Center (DRC), 1, Mathaf El-Matariya Street, El- Matariya B.O.P 11753 El-matariya, Cairo
  • SH. D. IBRAHIM Molecular Genetics and Genome Mapping Lab., AGERI, ARC, 9 Gamma ST., Giza, Cairo 12619

Abstract

Genus Origanum is one of the most species-rich as medicinal plants and pharmaceutically in the family Lamiaceae for several multipurpose used, and thus it is an endangered plant that needs a strict conservation plan. This genus contains many plants with medical uses, and thus an objective identification method is urgently needed. DNA barcoding is a sample fast technique at molecular level in the field of identification, authentication, classification and differentiation between two Origanum species and with other species. The current investigation was conducted to identify, discriminate and authenticate Origanum vulgare L. and Origanum syriacum L. subsp. sinaicum using two chloroplast genes (coding sequences) as the most common DNA barcodes, ribulose 1, 5-biphosphate carboxylase large subunit (rbcL) and maturase K (matK) genes. The partial sequence length of rbcL gene of two Origanum species were 528bp and Lamiaceae and take them away from five plant species from different families as out group of the family Lamiaceae. The obtained results revealed that rbcL and matK genes nucleotide sequence isolated from the two Origanum species in this investi- gation showed high similarities and closely related to NCBI recoded 17 genera be- longing to the family Lamiaceae. Furthermore, a phylogenetic tree analyses were constructed based on amino acid sequence of 60 rbcL and 60 matK genes using MEGA 7 program by Maximum Likelihood (ML) method with the highest log likelihood (-2836.15) for rbcL gene and (-5692.60) for matK gene

References

Ajmal A. M., Gyulai G., Hidwegi N., Kerti B., Al Hemaid F., Pandey A. K. and J. Lee (2014). The changing epitome of species identification DNA barcoding. Saudi J. Biol. Sci., 21:204-231.

Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. (1990). Basic Local Alignment Search Tool. J. Mol. Biol., 215: 403-410.

Asahina H., Shinozaki J., Masuda K., Morimitsu Y. and Satake M. (2010). Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. J. of Natural Medicines, 64: 133-138.

Asdal A. B., Galambosi, Bjorn G., Olsson K., Pihlik U., Radušiene J., et al., (2006). Spice and medicinal plants in the Nordic and Baltic countries. Conservation of genetic resources. In: Report from a project group at the Nordic Gene Bank; Alnarp, Norway, p.157.

Assi R., (2007). MP Threat analysis and threat reduction assessment report. Conservation and sustainable use of medicinal plants in arid and semi-arid ecosystems project.

Baser K. H. C., Kurkcuoglu M., Demirci B. and Ozek T. (2003). The Essential oil of Origanum syriacum L .Var. sinaicum (Bioss.) Ietswaart. Flavour Frag. J., 18:98-99.

Bezeng B. S., Davies T. J., Daru B. H., Kabongo R. M., Maurin O., Yessoufou K., et al., (2017). Ten years of barcoding at the African Centre for DNA Barcoding. Genome, 60: 629-638. doi: 10.1139/gen-2016-0198. PMID:28340301.

Boulos L. (2002). In: Flora of Egypt. Volume 3: Verbenaceae-Compositae. Cairo, Egypt: Al-Hadara Publishing. p. 12. ISBN 9775429250.

Bafeel S., Arif I., Bakir M., Khan H., Farhan A., et al., (2011) Comparative evaluation of PCR success with universal primers of maturase K (matK) and ribulose-1, 5-bisphosphate carboxylase oxygenase large subunit (rbcL) for barcoding of some arid plants. Plant Omics J., 4: 195-198.

Bafeel S. O., Arif I. A., Bakir M. A., A. A. Al Homaidan, Al Farhan A. H. and Khan H. A. (2012). DNA barcoding of arid wild plants using rbcL gene sequences. Genet. Mol. Res., 11: 1934-1941. doi:10.4238 /2012.July.19.12.

CBOL Plant Working Group (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106: 12794-12797.

CBOL: Consortium for the Barcode of Life (2010). Available, http://www. barcoding. si.edu/. Accessed June 1.

Chase M.W., Salamin N., Wilkinson M., Dunwell J. M., et al., (2005). Land plants and DNA barcodes: short-term and long-term goals. Philos. Trans., Ser. B 360: 1889-1895.

Chen J., Zhao Y-B., Wang Y-J. and Li X-

G. (2019). Identification of species and material medical within Saussurea subg. Amphilaena based on DNA barcodes. Peer. J, 7:e6357 http://doi.org/10.7717/peerj.6357.

De Mattia F., Bruni I., Galimberti A., Cattaneo F. , Casiraghi M. and Labra

M. (2011). A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Research International, 44: 693-702.

De Mattia F., Gentili R., Bruni I., Galimberti A., Sgorbari S., Casiraghi

M. and Labrai M. (2102). A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Botanical Journal of the Linnean Society, 169: 518-529.

De Vere N., Rich T. C. G., Ford C. R., Trinder S. A., Long C., et al., (2012). DNA barcoding the native flowering plants and conifers of Wales. PLoS ONE, 7: e37945.

doi:10.1371/journal.pone.0037945.

Duman H., Baser K. H. C. and Aytec Z. (1998). Two new species and a new hybrid from Anatolia. Tr. J. Bot., 22: 51-55.

Fazekas A. J., Burgess K. S., Kesanakurti

P. R., Graham S. W. et al., (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3: e2802.

Fazekas A. J., Kuzmina M. L., Newmaster

S. G. and Hollingsworth P. M. (2012). DNA barcoding methods for land plants. In: Kress J.W., Erickson D.L. (eds) DNA barcodes: methods and protocols. Methods Mol. Biol., 858:223-252. doi:10.1007/978-1-61779-591-6_11

Federici S., Galimberti A., Bartolucci F., Bruni I., F. Mattia De, Cortis P. and Labra M. (2013). DNA barcoding to analyze taxonomically complex groups in plants: the case of Thymus (Lamiaceae). Botanical Journal of the Linnean Society, 171: 687-699.

Ferri G., Corradini B., Ferrari F., Santunione A. L., Palazzoli F. and Alu M. (2015). Forensic botany II, DNA barcode for land plants: which markers after the international agreement? Forensic Sci. Int. Genet. 15, 131-136. doi: 10.1016/j.fsigen.2014.10.005.

Guenther R., Gilbert F., Zalat S., Selim K. and the volunteers of operation wallacea in Egypt (2005). Vegetation and grazing in the St Katherine Protectorate, South Sinai, Egypt. Egyptian J. Biol., 7: 55-65.

Harley R. M., Atkinson S., Budantsev A. L., Cantino P. D., Conn B. J., et al., (2004). Labiatae. In: J.W. Kadereit (ed.). The Families and Genera of Vascular Plants, vol. 7: 167-275. Berlin: Springer.

Hatab E. E. , (2009). Ecological studies on the Acacia species and ecosystem restoration in the Saint Katherine Protectorate, South Sinai, Egypt. Ph.D., Thesis, Fac. Sci., Al-Azhar Univ.

Hebert P. D. N., Cywinska A., Ball S. L., and deWaard J. R. (2003). Biological identifications through DNA barcodes. Proc. Biol. Sci., 270:313-321.

Ietswaart J. H., (1980). In: A Taxonomic Revision of the Genus Origanum. Leiden. Leiden University Press.

Khafagi O. A., Sharaf A. A. and Moursy M. M. (2013). Vegetation composition and ecological gradients in Saint Katherine Mountain, south Sinai, Egypt. American-Eurasian J. Agric. & Environ. Sci., 13: 402-414.

Kokkini S., (1997). Taxonomy, diversity and distribution of Origanum species. In: Proceedings of the IPGRI International Workshop on Oregano; Valenzano (Bari), Italy p: 122-132.

Kress, W. J. and Erickson D. L. (2007) A Two-Locus global DNA Barcode for land plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE 2: e508.

https://doi.org/10.1371/journal.pone.0000508

Kumar S., Stecher G. and Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33:1870-1874.

Levin R. A., Wagner W. L., Hoch P. C., Nepokroeff M. et al., (2003). Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. American Journal of Botany, 90: 107-115.

Lukas B., (2010). Molecular and phytochemical analyses of the genus Origanum L. (Lamiaceae), PhD thesis, University of Veterinary Medicine, Vienna, Austria.

Mastelic J., Jerkovic I., Blazevic I., Poljak-Blazi M., et al., (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol and eugenol derivatives. J. Agric. Food Chem. 56:3989-3996.

Mishra, M., A. Kumar, A. Nagireddy, D. N. Mani et al., (2016). DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnology J., 14: 8-21. doi: 10.1111/pbi.12419.

Nithaniyal S., Newmaster S. G., Ragupathy S., Krishnamoorthy D., Vassou S. L. and Parani M. (2014). DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India. PLoS ONE, 9, e107669.

Parveen I., Gafner S., Techen N., Murch S. J. and Khan I. A. (2016). DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med., 82: 1225-1235. doi: 10.1055/s-0042-111208

Schori M., and Showalter A. M. (2011). DNA barcoding as a means for identifying medicinal plants of Pakistan. Pak. J. Bot., 43I: 1-4.

Skoula M. and Harborne J. B. (2002). In: “The taxonomy and chemistry of Origanum” in kintzios S., Medicinal and Aromatic Plants-Industrial profiles – Oregano: The origanum and Lippia, London, Taylor and Francis, 67-108.

Skuza L., Szućko I., Filip E. and Adamczyk A. (2019). DNA barcoding in selected species and sub-species of Rye (Secale) using three chloroplast loci (matK, rbcL, trnH- psbA). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:54-62. DOI: 10.15835/nbha47111248

Tackholm V., (1974). Students Flora of Egypt, 2nd edn., 562. Cooperative Printing Co., Beirut. Tucker AO (1992). Will the real oregano please stand up? The herb. (HSA Library) 4:20-22.

Techen N., Parveen I., Pan Z. and Khan A. I. (2014). DNA barcoding of medicinal plant material for identification. Current Opinion in Biotechnology, 25: 103-110.

Theodoridis S., Stefanaki A., Tezcan M., Aki C., Kokkini S. and Vlachonasios K. E., (2012). DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Cesme-Karaburun Peninsula (Turkey). Mol. Ecol. Resour., 12:620-633.

Vohra P. and Khera K. S. (2013). DNA barcoding: current advance and future prospects a review. AJBLS, 3:185-189.

Xue C.Y. and Li D. Z. (2011). Use of DNA barcode sensu lato to identify traditional Tibetan medicinal plant Gentianopsis paludosa (Gentianaceae). Journal of Systematics and Evolution, 49: 267-270.

Zhou J., Wang W. C., Liu M. Q., and Liu Z. W. (2014). Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA-barcoding technique. Pharmacognosy Magazine 10:385-390. DOI 10.4103/ 0973-1296.141754.

Downloads

Published

2020-12-29

Issue

Section

Articles

Most read articles by the same author(s)