IN SILICO EPITOPE PREDICTION OF COAT PROTEIN GENE OF SUGARCANE MOSAIC VIRUS

Authors

  • AMAL MAHMOUD - Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt - Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam
  • ALI H. HAMED Virus and Phytoplasma Research, Plant Pathology Institute, Agriculture Research Center

Abstract

Sugarcane mosaic virus (ScMV) cause economic losses in the production of sugarcane, maize, sorghum, and some other graminaceous species. Detection of ScMV isolates using a very specific and efficient tool is needed for virus diagnosis and management. In this study, sequence analysis of ScMV partial coat protein (CP) was used to determine conserved sequences-potential epitope regions. PCR amplification of ScMV partial CP gene of an Egyptian isolate of ScMV (ScMV-Egy) resulted in 360 bp. Using multiple sequence analysis, 3 major substitutions were detected, (C8822→T, G8831→T, and T8846→C) and resulted in one amino acid substitution (K2894→N). None of the 3 substitutions affected the predicted RNA structure. Analysis of antigenicity, hydrophobicity, solvent accessibility, and exposed surface area resulted in 5 highly scored epitopes: TRATREEFDRW2878, DDTQMTVVMSGL2899, EEFDRWYEAI2883 TRATREE2878 and TVVMSGLMVWCI2904. The highly score-epitopes should be useful for producing sero-diagnostic ScMV antiserum. Further in vivo experiments to validate the predicted epitopes are needed.

References

Abd El Fattah, A. I., Hanan A. Nour El-Din, Abodoah1, A. M. and Sadik, A. S. (2005). Occurrence of two Sugarcane mosaic potyvirus strains in sugarcane. Pak. J. Biotechnol., 2: 1-12.

Allam, M. d. J., Ashraf, K. U. M., Gupta, S. D. and Emon, M. A. E. K. (2013). Computational approach for the prediction of potential MHC binding peptides and epitope mapping in order to develop serodiagnostic immunogen against Potato virus Y. International Journal of Computational Bioinformatics and In Silico Modeling, 2: 186-198.

El-Absawy, E. A, Khidr, Y. A. Mahmoud, A., Hasan, M. E. and Hemeida, A. A. (2012). Molecular variation of Potato virus Y isolated from Egypt. International J. Virol., 8: 81-89.

El-Morsi, A. A., Sadik, A. S., Soweha H. A. and El-Dahlob, S.M. (2003). Partial characterization of an isolate of Maize dwarf mosaic potyvirus and production of polyclonal antibodies for virus detection. Annals Agric. Sci. Fac. Agric., Ain Shams Univ., 48: 69-84.

El-Nahas, N. S., Sadek, G. S., Mahmoud, A., Rady, A. A., Oshiba, S. F. and Barakat, R. M. (2015). Immunological, histopathological and immunohistochemical responses to a new B cell epitope-based vaccine against leishmaniasis in experimental mice. Journal of American Science, 11: 1-15.

Goncalves, M. C., Galdeano, D. M., Maia, I. D. and Chagas, C. M. (2011). Genetic variability of Sugarcane mosaic virus causing maize mosaic in Brazil. Pesqui Agropecu Bras., 4: 362-369.

Koike, H & Gillaspie, AG Jr (1989). Mosaic', In Ricaud, C. Egan, BT Gillaspie AG Jr and Hughes, CG (eds.). Diseases of Sugarcane New York, USA: Elsevier, p. 301-322.

Li, Y. Q., Liu, R. Y., Zhou, T. and Fan, Z. F. (2013). Genetic diversity and population structure of Sugarcane mosaic virus. Virus Res., 1: 242– 246.

Mochizuki, T., Ohara, R., Roossinck, M. J. (2018). Large-Scale Synonymous Substitutions in Cucumber Mosaic Virus RNA 3 Facilitate Amino Acid Mutations in the Coat Protein. J. of Virol., 92: 1-13.

Padhi, A & Ramu, K (2011). Genomic evidence of intraspecific recombination in Sugarcane mosaic virus. Virus Genes, 2: 282-285.

Mahmoud, A (2012). Comparative sequence analysis and epitope prediction of the partial glycoprotein G gene of bovine ephemeral fever virus isolate from Egypt. Egyptian J. Virol., 9: 49-58.

Moradi, Z., Nazifi, E. and Mehrvar M. (2017). Occurrence and Evolutionary Analysis of Coat Protein Gene Sequences of Iranian Isolates of Sugarcane mosaic virus. Plant Pathol. J., 33: 296-306.

Nigam, D., LaTourrette, K., Souza, P. F. N., and Garcia-Ruiz, H. (2019). Genome-Wide Variation in Potyviruses. Front. Plant Sci., 10: 1439.

Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729.

Teakle, D. S., Shukla D. D. and Ford, R. E (1989). Sugarcane mosaic virus. Descriptions of Plant Viruses No. 342.

Wu, L. J., Han, Z.P., Wang, S. X., Wang, X. T. Sun, A. G. and Zu, X. F. (2013). Comparative proteomic analysis of the plant virus interaction in resistant and susceptible ecotypes of maize infected with Sugarcane mosaic virus. J. Proteomics, 89: 124-140.

Wu, L. J., Zu, X. F., Wang, S. X. and Chen, Y. H. (2012). Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot., 42: 74-78.

Xie, X., Chen, W. Fu. Q., Zhang, P., An, T., Cui, A. (2016). Molecular Variability and Distribution of Sugarcane mosaic virus in Shanxi, China. PLoS ONE, 11: 1-12.

Xu, D.-L., Park, J.-W., Mirkov, T. E., Zhou, G.-H. (2008). Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch. Virol., 153: 1031-1039.

Zhu, M., Chen, Y. T., Ding, X. S., Webb, S. L., Zhou, T., Nelson, R. S. and Fan, Z. F. (2014). Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. New Phytol., 4: 1291-1304.

Zuker, M (1989). On finding all suboptimal foldings of an RNA molecule. Science, 244: 48–52.

Downloads

Published

2020-07-08

Issue

Section

Articles