ASSESSMENT OF LEAD STRESS USING GENOME TEMPLATE STABILITY IN Hordeum vulgare
Abstract
Assement of genotoxins-induced DNA damage at molecular level is important in eco-genotoxicology. In this research, ISSR and SRAP were used to detect DNA damage in barley (Hordeum vulgare L.) seeding exposed to toxic ascending Pb at concentration of 50,100, and 150 mg/l for 15 days. Substantial inhibition of root growth was observed with an increase in the Pb concentration, whereas shoot growth was non significantly inhibited compared to the unexposed plantlets. The alternations in the SDS-PAGE of seed proteins are indicative of the ability of lead (Pb) to alter the gene expression in exposed plant. For the ISSR analyses, 9 ISSR primers were found to produce a total of 53 amplification products (loci) from the nine primers were identified in the control seedlings ranging from 410-1927 bp in molecular size (primer ISSR-9 and primer ISSR-8 respectively). The detected % of polymorphisms was 32.08%, 33.96% and 71.70% for 50, 100 and 150 mg/l lead treatment, respectively. While for the SRAP analyses, three ISSR primers were found to produce a total of 17 amplification products (loci) from the three combinations primers were identified in the control seedlings ranging from 127-1883 bp in molecular size. Different polymorphic bands were detected at each concentration of lead for different primers. The detected % of polymorphisms 52.94%, 58.82% and 70.59% for 50, 100 and 150 mg/l lead treatment, respectively. The number of disappearing SRAP bands was the highest (7) in Pb treated seedlings 150 mg/l. Moreover, the number of appearing SRAP bands was the highest (4) in Pb treated seedlings 100 and 50 mg/l.
Results produced from SDS-PAGE, ISSR and SRAP analysis indicated that the evident changes of exposed barley seedlings included gain or loss of bands compared with the control seedlings. The polymorphisms detected by both of SDS-PAGE, ISSR and SRAP profiles can be applied as a tool in risk assessment of Pb stress on plants. The results suggested that genomic template stability (GTS) reflecting changes in SDS-PAGE, ISSR and SRAP profiles was the most sensitive endpoint compared with the traditional indices such as root and shoot growth.
References
Abdel Salam, A. Z. E., A. Soliman and H. Z. Hassan (1997a). The mutagenic potentialities of two organo phosphorus compound using different biological systems, Egypt. J. Genet. Cytol., 26: 105-120.
Abdel Salam, A. Z. E., H. Z. Hassan, A. Soliman and A. Bahieldin (1997b). Differential mutagenic activities of two aromatic compounds due to different side chain as revealed by cytological analysis and biochemical genetic indices. Egypt. J. Genet. Cytol., 26: 121-142.
Abdelmigid, H. M. (2009). Risk assessment of food coloring agents on DNA damage using RAPD markers. Journal of Applied Biological Sciences, 3:116. Abdelmigid, H. M. (2010). Qualitative assessment of cadmium stress using genome template stability in Hordeum vulgare. Egypt. J. Genet. Cytol., 39: 291-303.
Ali, N. A., M. Ater, G. I. Sunahara and P. Y. Robido (2004). Phytotoxicity and bioaccumulation of copper chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. Ecotoxicology and Environmental Safety, 57: 363-374.
Atienzar, F. A., B. Cordi, M. B. Donkin, A. J. Evenden, A. N. Jha and M. H. Depledge (2000). Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata, Aquatic Toxicology, 50: 1-12.
Atienzar, F. A. and A. N. Jha (2006). The random amplified polymorphic DNA (RAPD assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Res., 613: 76-102.
Barcelo, J. and C. Poschenrieder (1990). Plant water relations as affected by heavy metal stress. J. Plant Nutri., 13: 1-37.
Beltagi, M. S. (2005). Phytotoxicity of lead (Pb) to SDS-PAGE protein profile in root nodules of faba bean (Vicia faba L.) plants. Pak. J. Biol. Sci., 8: 687-690.
Bornet, B. and M. Branchard (2001). Non anchored inter simple sequence repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Mol. Biol. Rep., 19: 209-215.
Bradford, M. M. (1976). Rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analysis Biochemistry, 72: 248-254.
Cenkci, S., I. H. Cigerci, M. Yildiz, C. Özay, A. Bozdag and H. Terzi (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L, Environ. Exp. Bot., 67: 467-473.
Chatterjee, C., B. K. Dube, P. Sinha and P. Srivastava (2004). Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice, Commun. Soil Sci. Plant Anal., 35: 255-265.
Daniel, W. H. R. and D. W. Andrea (2014). Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology. Appl. Plant Sci., Vol. 2 (1400017), July.
Donahue, B. A., S. Yin, J. S. Taylor, D. Reines and P. C. Hanawalt (1994). Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. USA, 91: 8502-8506.
Doyle, J. J. and L. Doyle (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-14.
El-Nahas, A. I. (2000). Mutagenic potential of imazethapyr herbicide (pursuit) on Vicia faba in the presence of urea fertilizer. Pakistan J. Biol. Sci., 3: 900-905.
Elzbieta, W. and C. Miroslawa (2005). Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.), Soil Sci. Plant Nutr., 51: 203-212.
Faheed, F. A. (2005). Effect of lead stress on the growth and metabolism of Eruca sativa seedling, Acta Agron. Hungarica, 319-327.
Fang, D. Q. and M. L. Roose (1997). Identification of closely related Citrus cultivars with inter-simple sequence repeats markers. Theor. Appl. Genet., 95: 408-417.
Fayez, K. A. (2000). Action of photo-synthetic diuron herbicide on cell organelles and biochemical constituents of the leaves of two soybean cultivars. Pest. Biochem. Physiol., 66: 105-115.
Fernández, B. M. E., A. M. Figueiras and C. Benito (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet., 104: 845-851.
Fusconi, A., O. Repetto, E. Bona, N. Massa, C. Gallo, E. Dumas-Gaudot and G. Berta (2006). Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environmental and Experimental Botany, 58: 253-260.
Gamal El-Din, A. Y., E. H. A. Hussein and M. A. Eweda (1988). Variations in chromosome number and its bearing on electrophortic protein banding pattern in Vicia. Bull. Fac. Agric. Cairo Univ., 39: 143-153.
Gastaldo, J., M. Viau, Z. Bencokova, A. Joubert, A. Charvet, J. Balosso and M. Foray (2007). Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways, Toxicol. Lett., 173: 201-214.
Gichner, T., I. Znidar and J. Száková (2008). Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat. Res. Genet. Toxicol. Environ. Mutagen, 652: 186-190.
Ginn, B., J. S. Szymanowski and J. B. Fein (2008). Metal and proton binding onto the roots of Fescue rubra. Chem. Geol., 253: 130-135.
Gopal, R. and A. H. Rizvi (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70: 1539-1544.
Grover, P., P. Rekhadevi, K. Danadevi, S. Vuyyuri, M. Mahboob and M. Rahman (2010). Genotoxicity evaluation in workers occupationally exposed to lead. Int. J. Hyg. Environ. Health, 213: 99-106.
Gupta, D., F. Nicoloso, M. Schetinger, L. Rossato, L. Pereira, G. Castro, S. Srivastava and R. Tripathi (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard Mater, 172: 479-484.
Hern, L. E. and D. T. Cooke. (1997). Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. Journal of Experimental Botany, 48: 1375-1381.
Hoagland, D. R. and D. I. Arnon (1950). The water-culture for growing plants without soil. Calif. Agric. Exp. Stn. Circ., 347 (Rev.).
Islam, E., X. Yang, T. Li, D. Liu, X. Jin and F. Meng (2007). Effect of Pb toxicity on root morphology, physiology and ultra structure in the two ecotypes of Elsholtzia argyi, J. Hazard Mater., 147: 806-816.
Jiang, W. and D. Liu (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol., Doi: 10.1186/1471-2229-10-40.
Karaca, M. and A. Izbirak (2008). Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers. J. Food Agric. Environ., 6: 219-225.
Khalaf, A. F., E. Deya, R.Mohamed , K. M. Asmaa and M. A. Abdelrahman (2013). Alteration in protein contents and polypeptides of peanut plants due to herbicides and salicylic acid treatments. J. Environmental Studies, 11: 27-36.
Kopittke, P. M., C. J. Asher, R. A. Kopittke and N. W. Menzies (2007). Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ. Pollut., 150: 280-287.
Kovalchuk, I., V. Titov, B. Hohn and O. Kovalchuk (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat. Res. Fundam Mol. Mech. Mutagen, 570: 149-161.
Krzesłowska, M., M. Lenartowska, S. Samardakiewicz, H. Bilski and A. Wo´zny (2010). Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable–a remobilization can occur. Environ. Pollut., 158: 325-338.
Labra, M., T. D. Fabio, F. Grassi and S. M. G. Regondi (2003). AFLP analysis as biomarker of exposure to organic and inorganic genotoxic substances in plants, Chemosphere, 52: 1183-1188.
Li, G. and C. F. Quiros (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461.
Lin, Z. X., X. L Zhang and Y. C. Nie (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Yi Chuan Xue Bao, 31: 622-626.
Liu, D., W. Jiang, F. M. Zhao and C. Lu (1994). Effects of lead on root growth, cell division and nucleolus of Allium cepa. Environ. Pollut., 86: 1-4.
Liu, W., Y. S. Yang, Q. X. Zhou, L. J. Xie, P. J. Li and T. Sun (2007). Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedling at molecular and population levels using multiple biomarkers. Chemosphere, 67: 1155-1163.
Meyers, D. R., G. J. Auchterlonie, R. I. Webb and B. Wood (2008). Uptake and localization of lead in the root system of Brassica juncea, Environ. Pollut., 153: 323-332.
Mitler, R. (2002). Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci., 7: 405-410.
Mohan, B. S. and B. B. Hosetti (1997). Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds, Environ Pollut., 98: 233-238.
Mujahid, F., B. S. Muhammad, E. Sana, A. Shafaqat, Z. Muhammad and A. H. Muhammad (2013). Morphological, physiological and biochemical responses of different plant species to Cd stress. IJCBS, 3: 53-60.
Naz, A., S. Khan, S. Muhammad, S. Khalid, S. Alam, S. Siddique, T. Ahmed and M. Scholz (2015). Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment, Int. J. Environ. Res. Public Health, 12: 7400-7416.
Ortega-Villasante, C., R. Rella´n A. lvarez, F. F. DelCampo., R. O. Carpena-Ruiz and L. E. Hern´andez (2005). Cellular damage induced by cadmium and mercury in Medicago sativa. Journal of Experimental Botany, 56: 2239-2251.
Ozturk, F., F. Duman, Z. Leblebici and R. Temizgul (2010). Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environm. and Experimental Botany, 69: 167-174.
Piotrowska, A., A. Bajguz, B. Godlewska-Zylkiewicz, R. Czerpak and M. Kaminska (2009). Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae), Environ. Exp. Bot., 66: 507-513.
Pourrut, B., G. Perchet, J. Silvestre, M. Cecchi, M. Guiresse and E. Pinelli (2008). Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J. Plant Physiol., 165: 571-579.
Pradeep-Reddy, M., N. Sarla and E. A. Siddiq (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128: 9-17.
Qureshi, M., M. Abdin, S. Qadir and M. Iqbal (2007). Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol. Plantarum 51: 121-128.
Rucinska, R., R. Sobkowiak and E. A. Gwó´zd´z (2004). Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol. Biol. Lett., 9: 519-528.
Snedecor, G. W. and W. G. Cochran (1973). Statistical Methods. 6th ed., Iowa State University Press, Iowa, USA.
Sengar, R. S., M. Gautam, R. S. Sengar, R. S. Sengar, S. Garg, K. Sengar and R. Chaudhary (2009). Lead stress effects on physiobiochemical activities of higher plants, Rev. Environ. Contam. Toxicol., 196: 1-21.
Seregin, I. V., L. K. Shpigun and V. B. Ivanov (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51: 525-533.
Shahid, M., E. Pinelli, B. Pourrut, J. Silvestre and C. Dumat (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation, Ecotoxicol. Environ. Saf., 74: 78-84.
Sharma, P. and R. S. Dubey (2005). Lead toxicity in plants, Braz. J. Plant Physiol., 17: 35-52.
Shehab, A. S., S. A. F. Tawab and M. M. Morci (2004). Stimulation of cell division and gene expression in Vicia faba L. using leaf powder of Azadirachte Indica. Egypt. J. Biotech., 17: 499-514.
Silbergeld, E. and K. Waalkes (2000). Lead as a carcinogen: experimental evidence and mechanisms of action [In Process Citation]. Am. J. Ind. Med., 38: 316-623.
Singh, R., R. D. Tripathi, S. Dwivedi, A. Kumar, P. K. Trivedi and D. Chakrabarty (2010). Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system, Bioresour Technol., 101: 3025-3032.
Stohs, S. J. and D. Bagchi (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18: 321-336.
Suradkar, S. G., D. J. Ghodasara, P. Vihol, J. Patel, V. Jaiswal and K. S Prajapati (2009). Haematobiochemical alterations induced by lead acetate toxicity in Wistar rats. Vet. World., 2: 429-431.
Tam´as, L., B. Boˇcov´a, J. Huttov´a, I. Mistr´ık and M. Oll´e (2006). Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth and Regulations, 48: 41-49.
Telma, E. S., M. L. Zanor and E. M. Valle (2008). Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav., 3: 856-857.
Tomulescu, I. M., E. M. Radoviciu, V. V. Merca, A. D. Tuduce (2004). Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J. Agric. Sci., 15: 39-42.
Tsuji, N., N. Hirayanagi, M. Okada, H. Miyasaka, K. Hirata and M. H. Zenk (2002). Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem. Bioph. Res. Co., 293: 653-659.
Valok, M., H. Morris and M. T. Cronin (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161-1208.
Wang, H., X. Shan, B. Wen, G. Owens, J. Fang and S. Zhang (2007). Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response, Environ. Exp. Boi., 61: 246-253.
Xu, C. and B. H. Zhao (2009). The development and application of SRAP molecular markers. Life Sci. Instrum., 7: 24-27.
Zhuang, P., M. B. McBride, H. Xia, N. Li and Z. Li (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ., 407: 1551-1561.