FIELD EVALUATION AND MOLECULAR ANALYSIS OF BEAN GENOTYPES FOR RESISTANCE TO RUST DISEASE
Abstract
Bean rust, caused by Uromyces appendiculatus (Pers.) Unger, is an important disease in both temperate and tropical bean production regions. Twenty two genotypes of snap bean (Phaseolus vulgaris L.) were collected and screened for resistance to bean rust disease in two seasons. Four genotypes, i.e., Concessa, Hort. 440, Coby and Hana were completely free from infection and were rated as immune to this disease. While, another four genotypes were recorded to disease severity ranged from 1.68% to 3.19% and were categorized as resistant (hypersensitive). Only one genotype was categorized as resistant with disease severity of 9.7%. The remaining 13 genotypes were susceptible having a disease severity ranged from 17.39% to 57.80%. Banding pattern of ten selected genotypes with various levels of resistance and susceptibility to bean rust and genetic diversity among them was evaluated using RAPD, ISSRs and SSRs. The three molecular systems generated total of 75 bands with polymorphism ranged from 60% to 85%. The large number of polymorphic bands allowed easy identification of the different genotypes at the DNA level. The developed dendrogram divided the common bean genotypes into two main clusters. It could be concluded that new promising resources for resistance to leaf rust were recorded in Egyptian snap bean germplasm. In addition, the developed banding patterns for these newly identified valuable Egyptian common bean accessions immune and resistant to leaf rust reported herein could support the future Egyptian snap bean germplasm collection, preservation and utilization.References
Belletti, P. and S. Lotito (1996). Identification of runner bean genotypes, Phaseolus coccineus L. by means of isozyme analysis. J. Genet. Breed., 50: 185-190.
Benchimol, L. L., T. Campos, S. A. M. Carbonell, C. A. Colombo and A. F. Chioratto et al. (2007). Structure of genetic diversity among common bean (Phaseolus vulgaris L.) varieties of Mesoamerican and Andean origins using new developed microsatellite markers. Genet. Res. Crop Evol., 54: 1747-1762.
Blair, M. W., F. Pedraza, H. F. Buendia, E. Gaitan-Solis and S. E. Beebe et al. (2003). Development of a genome -wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 107: 1362-1374.
Blair, M. W., J. M. Diaz, R. Hidalgo, L. M. Diaz and M. C. Duque et al. (2007). Microsatellite characterization of Andean races of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 116: 29-43.
Blair, M. W., M. C. Giraldo, H. F. Buendia, E. Tovar and M. C. Duque et al. (2006). Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 113: 100-109.
De Jesus, W. C., R. R. Coelho, B. Hau, L. Zambolim, L. C. Costa and A. Bergamin (2001). Effects of angular leaf spot and rust on yield loss of Phaseolus vulgaris. Phyto-pathology, 91: 1045-1053.
Diaz, L. M. and M. W. Blair (2006). Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theor. Appl. Genet., 114: 143-154.
Dikshit, H. K., T. Jhang, N. K. Singh, K. R. Koundal and K. C. Bansal et al. (2007). Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia Plantarum., 51: 451-457.
Durán, L. A., M. W. Blair, M. C. Giraldo, R. Macchiavelli and E. Prophete et al. (2005). Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci., 45: 1320-1328.
Fábio, G. F., S. V. Wender, A. R. Vilmar, X. C. Ronan and A. M. Maurilio et al. (2000). RAPD markers linked to a block of genes conferring rust resistance to the common bean. Genet. Mol. Biol., 23: 399-402.
Gaitán-Solís, E. M. C., Duque, K. J. Edwards and J. Tohme (2002). Microsatellite repeats in common bean (Phaseolus vulgaris): Isolation, characterization and cross-species amplification in Phaseolus ssp. Crop Sci., 42: 2128-2136.
Gillaspie, A. G., M. S. Hopkins and R. E. Dean (2005). Determining genetic diversity between lines of Vigna unguiculata subspecies by AFLP and SSR markers. Genetic Resources Crop Evolution, 52: 245-247.
Haley, S. D., P. N. Miklas, J. R. Stavely, J. Byrum and J. D. Kelly (1993). Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor. Appl. Genet., 86: 505-512.
Hanai, L. R., T. de Campos, L. E. Camargo, L. L. Benchimol and A. P. de Souza et al. (2007). Development, characterization and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic sources. Genome, 50: 266-277.
Kelly, J. D., P. Gepts, P. N. Miklas and D. P. Coyne (2003). Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res., 82: 135-154.
Kelly, J. D., S. D. Haley, L. Afanador, P. N. Miklas and J. R. Stavely (1994). Application of RAPD markers for disease resistance breeding in beans. Ann. Rep. Bean Impr. Coop, 37: 15-16.
Kumar, V., S. Sharma, S. Kero, S. Sharma and M. Kumar et al. (2008). Assessment of genetic diversity in common bean (Phaseolus vulgaris L.) germplasm using Amplified Fragment Length Polymorphism (AFLP). Sci. Hortic., 116: 138-143.
Liebenberg, M. M and Z. A. Pretorius (2010). Common Bean Rust: Pathology and Control. Hort. Rev., 37: 1-99.
Lioi, L., A. R. Piergiovanni, D. Pignone, S. Puglisi and M. Santantonio et al. (2005). Genetic diversity of some surviving onfarm Italian common bean (Phaseolus vulgaris L.) landraces. Plant Breed., 124: 576-581. MALR, 2013. Ministry of Agric. and Land Recl., Dept. of Agric. Static., Egypt.
Mcgregor, C. E., C. A. Lambert, M. M. Greyliing, J. H. Louw and L. Warnich, (2000). A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica., 113: 135-144.
Métais, I., B. Hamon, R. Jalouzot and D. Peltier (2002). Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor. Appl. Genet., 104: 1346-1352.
Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.1. Applied Biostatistics INC., New York, USA.
http://www.citeulike.org/user/gertpoulsen/article/8938586
Saker, M. M. (2005a). Biological and molecular characterization of some Egyptian barley genotypes resistant to net blotch disease. Cell Mol. Biol. Lett., 10: 265-280.
Saker, M. M. (2005b). Mapping RAPD and SSR markers linked to net blotch resistance gene in barley. Arab. J. Biotechnol., 8: 369-378.
Saker, M. M., M Nachtigall and T. Kuehne (2005). A comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egypt. J. Genet. Cytol., 34: 81-97.
Sneath, P. H. and R. R. Sokal (1973). Numerical Taxonomy. Freeman, San Francisco.
Song, Z. P., X. Xu, B. Wang, J. K. Chen and B. R. Lu (2003). Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor. Appl. Genet., 107: 1492-1499.
Souframanien, J. and T. Gopalakrishna (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor. Appl. Genet., 109: 1687-1693.
Souza, T., A. L. Alzate-Marin, F. G. Faleiro and E. G. Barros (2008). Pathosystem common bean-Uromyces appendiculatus: Host resistance, pathogen specialization, and breeding for rust resistance. Pest Tech., 2: 56-69.
Stam, P. (1997). Molecular markers: A useful tool for crop improvement via introgressive breeding. Wageningen Plant Breeding Research Theme 3.
Stavely, J. R., J. R. Steadman and R. T. McMillan (1989.) New pathogenic variability in Uromyces appendiculatus in North America. Plant Dis., 73: 428-432.
Sustar-Vozlic, J., M. Maras, B. Javornic and V. Meglic (2006). Genetic diversity and origin of Slovene common bean (Phaseolus vulgaris L.) germplasm as revealed by AFLP markers and phaseolin analysis. J. Am. Soc. Hort. Sci., 131: 242-249.
Tiwari, M., N. K. Singh, M. Rathore and N. Kumar (2005). RAPD markers in the analysis of genetic diversity among common bean germplasm from Central Himalaya. Genet. Res. Crop Evol., 52: 315-324.
Virk, P. S., H. J. Newbury, M. T. Jackson and B. V. Ford-Lloyd (2000). Are mapped markers more useful for assessing genetic diversity? Theor. Appl. Genet., 100: 607-613.
Vos, P., R. Hogers, M. Bleeker, M. Reijans and T. Van de Lee et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414.
Wasonga, J., C. Marcial, A. Pastor-Corrales, G. Timothy, P. Porch and D. Griffiths (201). Targeting gene combinations for broad- spectrum rust resistance in heat-tolerant snap beans developed for tropical environments. Journal of American Society of Horticulture Science, 135: 521-532.
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.
Yu, K., S. J. Park, V. Poysa and P. Gepts (2000). Integration of Simple Sequence Repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J. Hered., 91: 429-434.
Zeven, A. C. (1997). The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in The Netherlands in 1946. Euphytica, 94: 319-328.
Zeven, A. C., J. H. Waninge, T. Van, S. P. Singh and T. Hintum (1999). Phenotypic variation in a core collection of common bean (Phaseolus vulgaris L.) in the Netherlands. Euphytica, 109: 93-106.