CORRELATION ANALYSIS BETWEEN MYOSTATIN GENE POL-YMORPHISMS AND CARCASS TRAITS IN NEW ZEALAND ROMNEY SHEEP

Authors

  • A. H. M. IBRAHIM Department of Animal Breeding, Desert Research Center, Cairo, Egypt
  • J. G. H. HICKFORD Gene Marker Laboratory, Agriculture and Life Sciences Division, Lincoln University, Canterbury, New Zealand

Abstract

Using genetic markers can aid identifying those animals with the highest values for economically important traits in sheep. The current study was designed to detect the allelic and genotypic polymorphisms of the intron 1 of myostatin gene and to test their associations with carcass traits (slaughtering weight, dressing%, shoulder yield, loin yield, leg yield, total yield, shoulder yield%, loin yield% and leg yield%) in 529 male lambs of New Zealand Romney sheep.
The polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis was used to identify the allelic and genotypic polymorphisms in intron 1 of myostatin gene for 529 males from New Zealand Romney lambs. Associations of the variation in the intron 1 of myostatin gene with carcass traits were determined using the general linear model (GLM) procedure of SAS (2000).
The SSCP analysis revealed six SSCP genotypes: AA, AB, AC, BB, BC and CC with frequencies of 0.107, 0.368, 0.100, 0.289, 0.129 and 0.005, respectively, that derived from three identified alleles: A, B and C with frequency 0.34, 0.54 and 0.12, respectively.
Myostatin genotype significantly affected (P˂0.05) slaughtering weight and total yield, and highly significant affected (P˂0.001) dressing%, leg yield, shoulder yield%, loin yield% and leg yield%. The presence of A allele in animal genotype was associated with higher leg yield and leg yield%, however, the presence of B allele was associated with higher loin yield and loin yield%. The LSM showed that, lambs with two copies of A allele had the highest dressing%, leg yield, leg yield% and total yield, however, lambs with two copies of B allele had the highest shoulder yield, shoulder yield% and loin yield%. The results presented here give valuable information to select for A and B alleles and against C allele to improve the most important primal cuts of lambs across most production systems.

References

Bellinge, R. H. S., D. A. Liberles, S. P. A. Iaschi, P. A. O’Brien and G. K. Tay (2005). Myostatin and its implications on animal breeding: a review. Animal Genetics, 36: 1-6.

Boman, I. A., G. Klemetsdal, O. Nafstad, T. Blichfeldt and D. I. Vage (2010). Impact of two myostatin (MSTN) mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries). Genetic, Selection, Evolution, 42: 4.

Byun, S. O., Q. Fang, H. Zhou and J. G. H. Hickford (2009). An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Analytical Biochemistry, 385: 174-175.

Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibé, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier and M. Georges (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38: 813-818.

Gong, H., H. Zhou and J. G. H. Hickford (2011). Diversity of the glycine/tyrosinerich keratin-associated protein 6 gene (KAP6) family in sheep. Molecular Biology Reports, 38: 31-35.

Grisolia, A., G. Angelo, L. Porto Neto, F. Siqueira and J. Garcia (2009). Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. Genetics and Molecular Research, 8: 822-830.

Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Ménissier, J. Massabanda, R. Fries, R. Hanset and M. Georges (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17: 71-74.

Hadjipavlou, G., O. Matika, A. Clop and S. C. Bishop (2008). Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Animal Genetics, 39: 346-353.

Han, J., R. H. Forrest, J. R. Sedcole and J. Hickford (2015). Myostatin (MSTN) gene haplotypes and their association with growth and carcass traits in New Zealand Romney lambs. Small Ruminant Research, 127: 8-19.

Han, J., H. Zhou, R. H. Forrest, J. R. Sedcole, C. M. Frampton and J. G. H. Hickford (2010). Effect of myostatin (MSTN) g+6223G>A on production and carcass traits in New Zealand Romney sheep. Asian Australian Journal of Animal Science, 23: 863-866.

Haynes, F., P. Greenwood, M. Mcdonagh, C. Mcmahon, G. Nicholas, C. Berry and V. Oddy (2013). Lack of association between allelic status and myostatin content in lambs with the myostatin g+6723G>A allele. Journal of Animal Science, 91: 78-89.

Hickford, J. G. H., R. H. Forrest, H. Zhou, Q. Fang, J. Han, C. M. Frampton and A. L. Horrell (2009). Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Animal Genetics, 41: 64-72.

Hopkins, D. L., E. Safari, J. M. Thompson and C. R. Smith (2004). Video image analysis in the Australian meat industry - precision and accuracy of predicting lean meat yield in lamb carcasses. Meat Science, 67: 269-274.

Jain, H., S. Singh, M. Kadam and B. C. Sarkhel (2010). Knockdown of the myostatin gene by RNA interference in caprine fibroblast cells. Journal of Biotechnology, 145: 99-102.

Johnson, P. L., K. G. Dodds, W. E. Bain, G. J. Greer, N. J. McLean, R. J. McLaren, S. M. Galloway, T. C. van Stijn and J. C. McEwan (2009). Investigations into the GDF8 g+6273 G-A polymorphism in New Zealand Texel sheep. Journal of Animal Science, 87: 1856-1864.

Kambadur, R., M. Sharma, T. P. L. Smith and J. J. Bass (1997). Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7: 910-915.

Kijas, J. M., R. McCulloch, J. E. Hocking Edwards, V. H. Oddy, S. H. Lee and J. van der Werf (2007). Evidence for multiple alleles affecting muscling and fatness at the ovine GDF8 locus. BMC Genetics, 8: 80.

Laville, E., J. Bouix, T. Sayd, B. Bibe, J. M. Elsen, C. Larzul, F. Eychenne, F. Marcq and M. Georges (2004). Effects of a quantitative trait locus for muscle hypertrophy from Belgian Texel sheep on carcass conformation and muscularity. Journal of Animal Science, 82: 3128-3137.

Lin, J., H. B. Arnold, M. A. Della-Fera, M. J. Azain, D. L. Hartzell and C. A. Baile (2002). Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochemical and Biophysical Research Communications, 291: 701-706.

Lomelin, D., E. Jorgenson and N. Risch (2010). Human genetic variation recognizes functional elements in noncoding sequence. Genome Research, 20: 311-319.

Marchitelli, C., M. C. Savarese, A. Crisa, A. Nardone, P. A. Marsan and A. Valentini (2003). Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome, 14: 392-395.

Marcq, F., J. M. Elsen, S. El Barkouki, J. Bouix, F. Eychenne, L. Grobet, L. Karim, E. Laville, C. Nezer, L. Royo, T. Sayd, B. Bibe, P. L. Le Roy and M. Georges (1998). Investigating the role of myostatin in the determinism of double muscling. Animal Genetics, 29: 52.

McPherron, A. C., A. M. Lawler and S. J. Lee (1997). Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member. Nature, 387: 83-90.

McPherron, A. C. and S. J. Lee (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 94: 12457-12461.

McPherron, A. C. and S. J. Lee (2002). Suppression of body fat accumulation in myostatin-deficient mice. The Journal of Clinical Investigation, 109: 595-601.

Mendias, C. L., K. I. Bakhurin and J. A. Faulkner (2008). Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proceedings of the National Academy of Sciences of the United States of America, 105: 388-393.

SAS (2000). SAS Online Doc, Version 8, SAS Institute Inc. Cary, NC, USA.

Schuelke, M., K. R. Wagner, L. E. Stolz, C. Hubner, T. Riebel, W. Komen, T. Braun, J. F. Tobin and S. J. Lee (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350: 2682-2688.

Szabo, G., G. Dallmann, G. Muller, L. Patthy, M. Soller and L. Varga (1998). A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mammalian Genome, 9: 671-672.

Whittemore, L. A., K. Song, X. Li, J. Aghajanian, M. Davies, S. Girgenrath, J. J. Hill, M. Jalenak, P. Kelley, A. Knight, R. Maylor, D. O'Hara, A. Pearson, A. Quazi, S. Ryerson, X. Y. Tan, K. N. Tomkinson, G. M. Veldman, A. Widom, J. F. Wright, S. Wudyka, L. Zhao and N. M. Wolfman (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochemical and Biophysical Research Communications, 300: 965-971.

Wiener, P., J. A. Smith, A. M. Lewis, J. A. Woolliams and J. L. Williams (2002). Musclerelated traits in cattle: the role of the myostatin gene in the South Devon breed. Genetics Selection Evolution, 34: 221-232.

Zhang, L., X. Yang, X. An and Y. Chen (2007). Myostatin gene targeting in cultured ChinaHan ovine myoblast cells. Animal, 1: 1401-1408.

Zheng, Y., H. Maa, Y. Zheng, Y. Wang, B. Zhang, X. He, X. He, J. Liu and Y. Zhang (2012). Site-directed mutagenesis of the myostatin gene in ovine fetal myoblast cells in vitro. Research in Veterinary Science, 93: 763-769.

Zhou, H., J. G. Hickford and Q. Fang (2006). A twostep procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Analytical Biochemistry, 354: 159-161.

Zhou, H., J .G .H. Hickford and Q. Fang (2008). Variation in the coding region of the myostatin (GDF8) gene in sheep. Molecular and Cellular Probes, 22: 67-68.

Downloads

Published

2016-01-23

Issue

Section

Articles