MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF THE lpdA1 GENE IN S. meliloti

Authors

  • R. N. ABBAS Microbial Biotechnology Department, Genetic Engineering and Biotechnology institute (GEBRI), Sadat City University, Sadat City, Egypt Department of Natural Resources McGill University 21,111 Lakeshore, Ste-Anne de Bellevue, Qc, Canada H9X 3V9
  • B. BABIC Microbial Biotechnology Department, Genetic Engineering and Biotechnology institute (GEBRI), Sadat City University, Sadat City, Egypt
  • M. POILLY Microbial Biotechnology Department, Genetic Engineering and Biotechnology institute (GEBRI), Sadat City University, Sadat City, Egypt
  • D. J. MEEK Microbial Biotechnology Department, Genetic Engineering and Biotechnology institute (GEBRI), Sadat City University, Sadat City, Egypt
  • B. T. DRISCOLL Microbial Biotechnology Department, Genetic Engineering and Biotechnology institute (GEBRI), Sadat City University, Sadat City, Egypt

Abstract

The alfalfa-Sinorhizobium symbiosis is one of the best studied for plant-microbe associations. The pyruvate dehydrogenase complex catalyzes the key metabolic step connecting the glycolysis to the Tricarboxylic acid (TCA) cycle. The PDH also participates in anaplerotic synthesis of acetyl-CoA in bacteroids, or when grown in the presence of dicarboxylic acids as the sole carbon sources. The complex consists of multiple copies of the three subunits, pyruvate dehydrogenase (EC 1.2.4.1), that acts as the E1 component of the complex, dihydrolipoamide transacetylase (EC 2.3.1.12), the E2 component, and dihydrolipoamide dehydrogenase (EC 1.8.1.4), that participates as the E3 subunit. The lpdA1 gene was mutated through the site-directed, single crossover recombination, using modified pVIK112 suicide plasmids. The lpdA1 mutant failed to grow on pyruvate, and was significantly delayed on other tested carbon sources. The activity of the pyruvate dehydrogenase complex was not detected in this mutant, and the regulation of the lpdA1 was not dependent on the presence of pyruvate. This mutant was Nod+, but appeared Fix-.

References

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem., 72: 248-254.

Cabanes, D., P. Boistard and J. Batut (2000). Symbiotic induction of pyruvate dehydrogenase genes from Sinorhizobium meliloti. Mol. Plant Microb. Interact., 13: 483-493.

Driscoll, B. T. and T. M. Finan (2006). NAD+ dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol. Microbiol., 7: 865-873.

Duncan, M. J. (1979). L-arabinose metabolism in rhizobia. J. Gene. Microbiol., 113: 177-179.

Duncan, M. J. and D. G. Fraenkel (1979). Alpha-Ketoglutrate dehydrogenase mutant of Rhizobium-Meliloti. J. Bacteriol., 137: 415-419.

Finan, T. M., E. Hartweig, K. LeMieux, K. Bergman, G. C. Walker and E. R. Signer (1984). General transduction in Rhizobium meliloti. J. Bacteriol., 159: 120-124.

Finan, T. M., B. Kunkel, G. F. De Vos and E. R. Signer (1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol., 167: 66-72.

Finan, T. M., I. Oresnik and A. Bottacin (1988). Mutants of Rhizobium meliloti defective in succinate metabolism. J. Bacteriol., 170: 3396-3403.

Gao, H. X. and K. P. Jiang (2002). The E1 beta and E2 subunits of the Bacillus subtilis pyruvate dehydrogenase complex are involved in regulation of sporulation. J. Bacteriol., 184: 2780-2788.

http://www.ncbi.nlm.nih.gov/genbank

Jeyaseelan, K. and J. R. Guest (1980). Isolation and properties of pyruvate dehydrogenase complex mutants of Pseudomonas aeruginosa PAO. J. Gene Microbiol., 120: 385-392.

Kalogeraki V. S. and S. C. Winans (1997). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene, 188, Issue 1, 25 March 1997, p. 69-75.

Krogh, A., B. Larsson, G. Von Heijne and E. L. Sonnhammer (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 305: 567-580.

Meade, H. M., S. R. Long, G. B. Ruvkun, S. E. Brown and F. M. Ausubel (1982). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobiumme liloti induced by transposon TnS mutagenesis. J. Bacteriol., 149: 114-122.

Phylip, (2000). Phylogeny Inference Package Version 3.2. Cladistics, 1989: 164-166.

Poysti, N. J. and I. J. Oresnik (2007). Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J. Bacteriol., 189: 3445-3451.

Rice, P., I. Longden and A. Bleasby (2000). EMBOSS: the European molecular biology open software suite. Trends in Genetics, 16: 276-277.

Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor NY.

Sarma, A. D. and D. A. Emerich (2006). Comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics, 6: 3008-3028.

Soto, M. J., J. Sanjuan and J. Olivares (2001). The disruption of a gene encoding a putative arylesterase impairs pyruvate dehydrogenase complex activity and nitrogen fixation in Sinorhizobium meliloti. Mol. Plant-Microbe Interact., 14: 811-815.

Thompson, J. D., D. G. Higgins and T. J. Gibson (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673-4680.

Wilson, R. L., P. S. Steiert and G. V. Stauffer (1993). Positive regulation of the Escherichia coli glycine cleavage enzyme system. J. Bacteriol., 175: 902-904.

Yarosh, O. K., T. C. Charles and T. M. Finan (1989). Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Mol. Microbiol., 3: 813-823.

Downloads

Published

2016-01-23

Issue

Section

Articles

Most read articles by the same author(s)