ACTIVATION OF Bare-1 RETROTRANSPOSONS IN BARLEY UNDER SORBITOL STRESS
Abstract
LTR-retrotransposons and other repetitive DNA elements are directly or indirectly responding to a wide variety of stresses by increasing or decreasing its copies. This effect is specific for different retrotransposons or stresses. The Bare-1 retrotransposon members are actively transcribed in vivo in barley. Bare-1 family was reported to respond to sharp microclimatic divergence specially drought. Sorbitol has been used widely to mimic the effects of drought. A potential osmotically-stressed action has been ascribed to sorbitol, but invivo evidence of this remains elusive. In the present work, the effect of sorbitol was compared in both Copia and Gypsy groups of retrotransposon using specific primers for both groups. One step RT-PCR analysis showed that sorbitol exerted a strong influence upon Copia elements group after 4, 24 and 34 hours of sorbitol treatment. When Bare-1 specific primers were used to amplify Copia cDNA products, it revealed unique strong DNA bands at the same time points. The immunobloting of Bare-1 Gag protein specific antibody showed no specific increase after these treatments. Hence, sorbitol, has the capacity, in barley plant, to increase the transcriptional activity of Copia elements specially Bare-1 retrotransposon.References
Beguiristain, T., M. A. Grandbastien, P. Puigdomènech and J. M. Casacuberta (2001). Three Tnt1 Subfamilies Show Different Stress-Associated Patterns of Expression in Tobacco. Consequences for Retrotransposon Control and Evolution in Plants. Plant Physiol., 127: 212-221.
Cheng, C., M. Daigen and H. Hirochika. (2006). Epigenetic regulation of the rice retrotransposon Tos17. Mol. Genet. Genomic, 276: 378- 390
Flavell, A. J., E. Dunbar, R. Anderson, S. R. Pearce, R. Hartley and A. Kumar (1992). Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res., 20: 3639-3644.
Grandbastien, M. A., C. Audeone, J. M. Bonnivard, B. Casacuberta, A. P. P Chalhoub, Q. H. Costa, D. Lea, M. Melayah, C. Petit, S. M. Poncet, M. A. Tam, C. Van Sluys and Mhiria (2005). Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet. Genome Res. 110: 229- 241.
Grandbastien, M. A. (1998). Activation of retrotransposons under stress conditions. Trends Plant Sci., 3: 181- 187.
Hirochika, H., K. Sugimoto, Y. Otsuki, H. Tsugawa and M. Kanda (1996). Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci., USA, 93: 7783-7788.
Hirochika, H. (1995): Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non- Mendelien Inheritance, p. 15-21. Hirochika, H. and R. Hirochika. (1993). Tyl-copia group retrotransposons as ubiquitous components of plant genomes. Japan J. Genet., 68: 35- 46.
Jääskeläinen, M., A. H. Mykkänen, T. Arna, C. Vicient, A. Suoniemi, R. Kalendar, H. Savilahti and A. H. Schulman (1999). Retrotrasnposon Bare-1: expression of encoded proteins and formation of virusparticle in barely cells. Plant Journal, 20: 413-422.
Kalendar, R., J. Tanskanen, S. Immonen, E. Nevo and A. H. Schulman (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in responseto sharp microclimatic divergence. Proc. Natl. Acad. Sci., USA, 97: 6603-6607.
Kanayama, Y., R. Moriguchi, M. Deguchi, K. Kanahama and S. Yamaki (2007). Effects of environmental stresses and abscisic acid on sorpitol-6-phosphate dehydrogenase expression in rosaceae fruit trees. Acta Hort., (ISHS) 738: 375- 381.
Kidwell, M. G. and D. R. Lisch (2000). Transposable elements and host genome evolution. Trends Ecol. Evol., 15: 95-99.
Lo Bianco, R., M. Rieger and S. S. Sung. (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiologia Plantarum, 108: 71-78.
Mansour, A. (2007). Epigenetic activation of genomic retrotransposons. J. Cell and Molecular Biology, 6: 99- 107.
Nellaker, C., Y. Yao, L. Jones-Brando, F. Mallet, R. H. Yolken and H. Karlsson (2006). Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology, 6: 30-44.
Okamoto, H. and H. Hirochika (2000). Efficient insertion mutagenesis of Arabidopsis by tissue cultureinduced activation of the tobacco retrotransposon Tto1. Plant J., 23: 291-304.
Pouteau, S., E. Huttner, M. A. Grandbastien and M. Caboche (1991). Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J., 10: 1911- 1918.
Salazar, M., E. González, J. A. Casaretto, J. M. Casacuberta and S. Ruiz- Lara (2007). The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep., 26: 1861-1868.
Suoniemi, A., K. Anamthawat-Jo´nsson, T. Arna and A. H. Schulman (1996). Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol., 30: 1321-1329.
Suprunova, T., T. Krugman, A. Distelfeld, T. Fahima, E. Nevo and A. Korol (2007). Identification of a novel gene (Hsdr4) involved in waterstress tolerance in wild barley. Plant Mol. Biol., 64: 17-34
Vicient, C. M., M. J. Jääskeläinen, R. Kalendar and A. H. Schulman (2001). Active Retrotransposons Are a Common Feature of Grass Genomes. Plant Physiology, 125: 1283-1292.
Wu, Y., J. Kuzma, E. Mare´ Chal, R. Graeff, H. C. Lee, R. Foster and Nam-Hai Chua (1997). Abscisic Acid Signaling Through Cyclic ADP–Ribose in Plants. Science, 278: 2126-2130.