ASSOCIATION OF MOLECULAR MARKERS WITH PHENOTYPIC TRAITS OF BREAD WHEAT GENOTYPES
Abstract
Phenotypic traits and molecular markers analyses are very important tools for the estimation of genetic variability among genotypes. In 36 bread wheat genotypes, genetic variability and marker-trait associations were studied for 8 agro-nomic traits using a set of 101 DNA-based molecular markers (61 ISSR and 40 SRAP polymorphic markers). The results of ISSR and SRAP analyses showed similar range of the percentage of polymorphism (%P) (20 to 100%), as well as the average of polymorphic information content (PIC) which was about 0.15 and 0.16, respec-tively. Results showed that di-nucleotide repeat primers represented the highest levels of polymorphism, i.e. UBC-845 and UBC-834 belonged to (CT) and (AG) re-peats produced %P of 92.31 and 100%, respectively. While, UBC-876 belonged tetra-nucleotide repeat (GATA) produced lower level of polymorphism (20%). Re-sults of marker index (MI) showed that SRAP were more efficient than the ISSRs markers, where the SRAP technique ex-hibited higher average (1.03) of marker index compared to ISSR one (0.79). Sin-gle-marker analysis (SMA) indicated that one ISSR, six ISSRs and one SRAP mark-ers linked to the days to heading, spike length and number of kernel per spike traits, respectively. The cluster analysis based on ISSRs and SRAP data revealed similarity coefficient values ranged from 0.51 to 1.00 with an average of 0.76, and from 0.44 to 0.96, with an average of 0.70, respectively. The genotypes "L28, L29 and L30" grouped together based on ISSR and SRAP markers analyses. Similarity matrices generated by ISSRs and SRAP showed a positive and highly significant correlation (r = 0.63**, p=0.000).References
Abou-Deif, M. H., M. A. Rashed, A. A. M. Sallam, E. A. H. Mostafa and W. A. Ramadan (2013). Characterization of twenty wheat varieties by ISSR markers. Middle-East J. Scientific Res., 15: 168-175.
Ahmadi, J. and M. Zar (2011). Wheat genetic diversity and DNA markers in relation with response to drought stress. Genet. Plant Physiol., 1: 45-55.
Al-Doss, A. A., M. Saleh, K. A. Moustafa, A. A. Elshafei and M. N. Barakat (2010). Grain yield stability and molecular characterization of durum wheat genotypes under heat stress conditions. African J. Agric. Res., 5: 3065-3074.
Al-Doss, A. A., A. A. Elshafei, K. H. Moustafa, M. Saleh and M. N. Barakat (2011). Comparative analysis of diversity based on morphoagronomic traits and molecular markers in durum wheat under heat stress. African J. Biotechnol., 10: 3671-3681.
Aneja, B., N. R. Yadav, V. Chawla and R. C Yadav (2012). Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol. Breed., 30: 1635-1648.
Carvalho, A., J. Lima-Brito, B. Maçãs and H. Guedes-Pinto (2009). Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochem. Genet., 47: 276-294.
Cui, F., X. Fan, C. Zhao, W. Zhang, M. Chen, J. Ji and J. Li (2014). A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet., 15:57.
El-Rawy, M. A. and M. Youssef (2014). Evaluation of drought and heat tolerance in wheat based on seedling traits and molecular analysis. J. Crop Sci. Biotech., 17: 183-189.
Elshafei, A. A., M. Saleh, A. A. Al-Doss, K. A. Moustafa, F. H. Al-Qurainy and M. N. Barakat (2013). Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stressed condition. Aust. J. Crop Sci., 7: 887-893.
Emel, S. (2010). Evaluation of ISSR markers to assess genetic variability and relationship among winter triticale (X Triticosecale Wittmack) cultivars. Pak. J. Bot. 42: 2755-2763.
Fufa, H., P. S. Baenziger, B. S. Beecher, I. Dweikatl, R. A. Grabosch and K. M. Eskridge (2005). Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 145: 133-146.
Ghislain, M., D. Zhang, D. Fajardo, Z. Hanuman and R. Hijmans (1999). Marker-assisted sampling of the cultivated Andean potato (Solanum phureja) collection using RAPD markers. Genet., Res., Crop Evol., 46: 547-555.
Gupta, P. K., R. K. Varshney, P. C. Sharma and B. Ramesh (1999). Molecular markers and their applications in wheat breeding. Plant Breed., 118: 369-390.
Hamam, K. A., A. G. A. Khaled and M. M. Zakaria (2015). Genetic stability and diversity in yield components of some wheat genotypes through seasons and heat stress under different locations. J. Plant Production, Mansoura Univ., 6: 349-370.
Jaccard, P. (1908). Nouvelles recherché sur la distribution florale. Bull. Soc. Vandoise Sci. Nat., 44: 223-270.
Karaca, M. and A. Izbirak (2008). Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers. J. Food Agric. Environ., 6: 219-225.
Khaled, A. G. A., K. A. Hamam, M. H. Motawea and G. A. R. El-Sherbeny (2013). Genetic analysis and RAPD markers for tissue culture response and some agronomical traits in Egyptian bread wheat. J. Genet. Engineering Biotech., 11: 79-86.
Li, G. and C. F. Quiros (2001). Sequence-related amplified polymorphism
(SRAP) a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet., 103: 455-461.
Li, S., J. Jia, X. Wei, X. Zhang, L. Li and et al. (2007). A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed., 20: 167-178.
Mansing, J. S. (2010). Charcterization of wheat (Triticum spp.) genotypes through morphological, chemical and molecular markers. MSc. of Agriculture, University of Agricultural Sciences, Dharwad.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res., 27: 209-220.
Maric, S., S. Boleric, J. Martinicic, I. Petic and V. Kozumplic (2004). Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficient of parentage. Plant Breed., 123: 366-369.
Nagaoka, T. and Y. Ogihara (1997). Applicability of inter-simple sequence repeats polymorphisms in what for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94: 597-602.
Najaphy, A., R. A. Parchina and E. Farshadfara (2011). Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnol. Biotec. Eq., 25: 2634-2638.
Peng, J. H. and N. L. V. Lapitan (2005). Characterization of EST-derived microsatellites in the wheat genome development of eSSR markers. Funct. Inter. Genom., 5: 80-96.
Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalsky (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225-238.
Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.1 Exeter Software, Setauket. USA.
Roy, J. K., M. S. Lakshmikumaran, H. S. Balyan and P. K. Gupta (2004). AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochm. Genet., 42: 43-59.
Roy, J. K., R. Bandopadhyay, S. Rustgi, H. S. Balyan and P. K. Gupta (2006). Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Sci., 90: 683-689.
Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Sofalian, O., N. Chaparzadeh, A. Javanmard and M. S. Hejazi (2008). Study the genetic diversity of wheat landraces from northwest of Iran based on ISSR molecular markers. Int. J. Agric. Biol., 10: 466-468.
Song, Q. J., E. W. Fichus and P. B. Cregan (2002). Characterization of trinucleotide SSR motifs in wheat. Theor. Appl. Genet., 104: 286-293.
Talebi, R., A. Haghnazari and I. Tabatabaei (2010). Assessment of genetic variation within international collection of Brassica rapa genotypes using inter simple sequence repeat DNA markers. Biharean Biol., 4: 145-151.
Tatikonda, L., P. Wani S., S. Kannan, N. Beerelli, T. K. Sreedevi, D. A. Hoisington, P. Devi and R. A. Varshney (2009). AFLP-based molecular characterization of an elite germplasm collection of Jatro phacurcas L.: A biofuel plant. Plant Sci., 176: 505-513.
Thudi, M., R. Manthena, S. P. Wani, L. Tatikonda, D. A. Hoisington and R. A. Varshney (2010). Analysis of genetic diversity in Pongamia (Pongamia pinnata L. Pierre) using AFLP markers. J. Plant Biochem. Biotech., 19: 209-216.
Tok, D., F. Senturk-Akfirat, D. Sevinc, Y. Aydin and A. Altinkut-Uncuoglua (2011). Identification of genetic polymorphism and DNA methylation pattern in wheat (Triticum aestivum L.). Turk. J. Field Crops, 16: 157-165.
Van-Becelaere, G., E. L. Lubbers, A. H. Parerson and P. W. Chee (2005). Pedigreevs. DNA marker-based genetic similarity estimates in cotton. Crop Sci., 45: 2281-2287.
Van-Beuningen, L. T. and R. H. Bush (1997). Genetic diversity among North American spring wheat cultivars: III. Cluster analysis based on quantitative morphological traits. Crop Sci., 37: 981-988.
Varshney, R. K., H. S. Balyan and P. Langridge (2005). Wheat. In The Genome: Cereals and Millets (ed. Kole, C.), Science Publishers, Inc., Enfield (NH), USA, p. 121-219.
Wang, X., G. Liu, R. Chang, J. Han and E. Guo (2009). Optimization of annealing temperature of SRAP-PCR in 5 temperate fruits. Geno. Appl. Biol., 28: 525-528.
Yang, W., A. C. Olivera, I. Godwin, K. Schertz and J. L. Bennetzen (1996). Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci., 36: 1669-1676.
Zaefizadeh, M. and R. Goliev (2009). Diversity and relationships among durum wheat landraces (subconvars) by SRAP and phenotypic marker polymorphism. J. Biological Sci., 4: 960-966.
Zeven, A. C. and R. Schavhi (1989). Groups of bread wheat landraces in the Australian Alps. Euphytica, 41: 235-246.
Zietkiewicz, E., A. Rafalski and D. Labuda (1994). Genome fingerprinting by simple sequence repeat (SSR)-Anchored polymerase chain reaction amplification. Genomics, 20: 176-183.