ASSESSMENT OF GENETIC DIVERSITY IN COWPEA (Vigna unguicalata) USING SDS-PAGE, RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) AND INTER-SIMPLE SEQUENCE REPEAT (ISSR) MARKERS
Abstract
Genetic diversity of four cultivars of Egyptian cowpea (Vigna unguicalata) was studied by SDS-PAGE, RAPD and ISSR-PCR. SDS-PAGE recorded a low degree of polymorphism among the four cultivars of cowpea. Only four polymorphic bands were recorded with a percentage of 22.22%. On the other hand, RAPD-PCR generated polymorphism among the DNA samples of the studied cultivars. The ten primers generated a sum of 23 polymorphic bands in the cultivars under study. Nine unique bands were identified out of the polymorphic ones. The percentage of polymorphism ranged from 16.67% to 55.56% with an average of 26.37%. ISSR bands generated higher level of polymorphism than RAPD among the DNA samples of the studied cowpea cultivars. The ten ISSR primers generated a sum of 32 polymorphic bands in the cultivars under study. Nineteen unique bands were identified out of the polymorphic ones. The percentage of polymorphism ranged between 16.67% and 75% with an average of 28.27%.
A dendrogram obtained from UPGMA cluster analysis based on protein analysis classified the four cultivars into two groups. Only cultivar Kareem 7 was isolated in a single group, while the second group contained the other 3 cultivars. Dendrogram based on the ten RAPD primers revealed two main genetic clusters. The first cluster comprises the cultivar Kareem 7 and Dokki 331, while the second cluster includes Kaha 1 and Kafer El-Sheikh 1. On the other hand, a dendrogram based on the ten ISSR data revealed two main genetic clusters. Cultivar Kafer El-Sheikh 1 separated in a single group, while the second cluster includes the other three cultivars. Dendrogram obtained from combined data are inagreement with that of ISSR dendrogram in which cultivar Kafer El-Sheikh-1 was separated in a single group, while the SDS-PAGE and RAPD dendrograms showed some variations in the clustering of cowpea cultivars.
Considering all the gained data, it is evident that molecular detection of RAPD and ISSR are suitable tools than SDS-PAGE in assessing genetic variation among the four cultivars of cowpea. These markers provide interesting tools for breeding new varieties of Egyptian cowpea.
References
Adnan, K. and K. Katsuhiko (2011). Efficiency of ISSR and RAPD dominant markers in assessing genetic diversity among Japanese and Syrian cultivars of barley (H. vulgare L.). Research Journal of Agriculture and Biological Sciences, 7: 4-10.
Ajibade, S. R., N. F. Weeden and S. M. Chite (2000). Inter-simple sequence repeats analysis of genetic relationships in the genus Vigna. J. Euphytica, 111: 47-55.
Asiwe, J. A. N., A. Belane and F. D. Dakora (2009). Evaluation of cow-pea breeding lines for nitrogen fixation at ARC-Grain Crops Institute. Potchefstroom, South Africa. Paper presented at the 16th International Congress on Biological Nitrogen Fixation, Montana, USA, 14-19 June, 2009.
Ba, F., R. S. Pasquet and P. Gepts (2004). Genetic diversity in cowpea (Vigna unguiculata L. Walp) as revealed by RAPD markers. Genetic Resources and Crop Evolution, 51: 539-550.
Badiane, F. A., B. S. Gowda and N. Cisse (2012). Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers. Genet. Mol. Res., 11: 292-304.
Badr, A. and M. Halawa (2012). Genetics and molecular effects of gamma radiation on some varieties of cow-pea. A MSC Thesis for Faculty of Science, Tanta University.
Badr, A., M. M. Abou-El-Enain and H. H. El-Shazly (1998). Variation in seed protein electrophoretic pattern and species relationships in Sesbania. Proc. 6th Egypt, Bot., Conf. Plant Sci., Cairo Univ., 3: 493-501.
Barakat, H. M., A. E. Amina, A. S. E. Nahla and A. A. Sara (2013). Genetic studies on Egyptian landraces using molecular markers. A MSC Thesis, Faculty of Science, Ain Shams University.
Bonfitto, R., L. Galleschi, M. Macchia, F. Saviozzi and F. Navari-Izzo (1999). Identification of melon cultivars by gel and capillary electrophoresis. Seed Sci. Tech., 27: 779-83.
Cerdeira, A. L., A. W. Cole and D. S. Luthe (1985). The seed proteins of cowpea (Vigna unguiculata L. Walp). J. Exp. Bot., 31: 1599-1611.
Dikshit, H. K., T. Jhang, N. K. Singh, K. R. Koundal, K. C. Bansal, N. Chandra, J. L. Tickoo and T. R. Sharma (2007). Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia Plantarum, 51: 451-457.
Diouf, D. (2011). Recent advances in cowpea (Vigna unguiculata (L.) Walp) omics research for genetic improvement. Afr. J. Biotechnol., 10: 2803-2810.
Fotso, M., J. L. Azanza, R. Pasquet and J. Raymond (1994). Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteins. Pl. Syst. Evol., 191: 39-56.
Freitas, R. L., A. R. Teixeira and R. B. Ferreira (2004). Characterization of the proteins from Vigna unguiculata seeds. J. Agric. Food Chem., 52: 1682-1687.
Ghalmi, N., M. Malice, J. M. Jacquemin, S. M. Ounane, L. Mekliche and J. P. Baudoin (2010). Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata L.) Walp. Landraces. Genet. Res. Crop. Evol., 57: 371-386.
Hall, A. E., N. Cisse, S. Thiaw, H. O. A. Elawad, J. D. Ehlers, A. Ismail, R. Fery, P. Roberts, W. KitchL, L. L. Murdock, O. Boukar, R. D. Phillips and K. H. Watters (2003). Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res., 82: 103-134.
Hassan, H. Z. (2001). Biochemical and molecular genetics characterization of nine mung bean (Vigna radiate L.) cultivars. Bull. Fac. Assiut Univ., 30: 137-151.
Huaqiang T., H. Haitao, T. Manman, M. Jianyao and L. Huanxiu (2013). Comparative analysis of six DNA extraction methods in cowpea (Vigna unguiculata L. Walp). Journal of Agricultural Sci., 5 p 82.
Kaga, A., M. S. Yoon, N. Tomooka and D. A. Vaughan (2000). Collection of Vigna spp. and other legumes from the islands of southern Okinawa prefecture, Japan. In: Report to IPGRI and East Asia Plant Genetic Resources Coordinators. National Institute of Agro biological Resources, Japan, 2-25
Kakaei, M. and D. kahrizi (2011). Evaluation of seed storage protein patterns of ten wheat varieties using SDS-PAGE. Biharean Biol., 5: 116-118.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
Lakhanapaul, S., S. Chadha and K. V. Bhat (2000). Random amplified polymorphic DNA (RAPD) analysis in Indian mungbean (Vigna radiata (L) L. Wilczek) cultivars. Genetics, 109: 227-234.
Lavanya, G. R., S. Srivastava and S. A. Ranade (2008). Molecular assessment of genetic diversity in mung bean germplasm. J. Genet., 87: 65-74.
Maged, A. E. A. and M. A. Shawkat (2012). Interspecific diversity of Egyptian and foreign new lines of chickpea based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and isozyme markers. AJB. 6: 135-139.
Malviya, N., B. K. Sarangi, M. K. Yadav and D. Yadav (2012). Analysis of genetic diversity in cowpea (Vigna unguiculata L. Walp.) cultivars with random amplified polymorphic DNA markers. Plant Syst. Evol., 298: 523-526.
Mansour, N. M., M. A. Fathi and H. Z. Hassan (1998). Selection and evaluation on the horticulture and biochemical genetic bases of early peach of Sinai. In Proc. of 26th AnF. Vairinhos, M. B. Peoples and C. A. Atkins (1983). Electrophoresis studies of the seed proteins of cowpea (Vigna unguiculata (L.) Walp). Z. Pflanzen Physiol., 109: 363-370.
Nagaoka, T. and Y. Ogihara (1997). Applicability of inter simple sequence repeats polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94: 597-602.
Nicola, T. and N. Valeria (2002). Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata sub sp. Unguiculata) landraces. Genome. 45: 268-275.
Nkongolo, K. K., J. Bokosi, M. Malusi, Z. Vokhiwa and M. Mphepo (2009). Agronomic, culinary, and genetic characterization of selected cowpea elite lines using farmers and breeder’s knowledge: A case study from Malawi. African Journal of Plant Science, 3: 147-156.
Oppong-Konadu, E. Y. R., I. K. Akromah and E. Okai (2005). Genetic diversity within Ghanaian cowpea germplasm based on SDS-PAGE of seed proteins. African Crop Science Journal, 13: 117-123.
Phillips, R. D., K. H. Mc Watters, M. S. Chinannan, Y. Hung, L. R. Beuchat, D. S. Sefa, D. E. Saki, P. Ngoddy, D. Nnanyelugo, J. Enwere, N. S. Komey, K. Liu, W. Y. Mensa, I. Nnanna, C. Okeke, W. W. Prinya and F. K. Saalia (2003). Utilization of cowpeas for human food. Field Crops Res., 82: 193-213.
Saini, M., S. Singh, Z. Hussain and A. Yadav (2010). RAPD analysis in mung bean (Vigna radiata L. Wilezek) 1-Assessment of genetic diversity. Indian, J. of Biotech., 9: 137-146.
Singh, B. B., O. L. Chamblis and B. Sharma (1997). Recent advances in cowpea breeding. In Advances in Cowpea Research, edited by B. B. Singh, D. R. Mohan Raj, K. E. Dashiell, and L. E. N. Jackai. IITA and Japan International Research Centre for Agricultural Sciences (JIRCAS) copublication. Available at IITA, Ibadan, Nigeria. p: 30-49.
Souframanien, J. and K. T. Gopala (2004). A comparative analysis of genetic diversity in black gram genotypes using RAPD and ISSR markers. Theor. Appl. Genet., 109: 1687-1693.
Sayed, M. M., K. Danial , R. A. Hossein, S. Jahad, K. Sara, M. Ali, Y. Kheirollah and B. lecular (2012). Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Molecular Biology Reports, 39(12): 10361-10365. http://link.springer. com/article/10.1007%2Fs11033-012-1914-3
Takeda, S. and M. Matsuoka (2008). Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet., 9: 444-457.
Vaillancourt, R. E., N. F. Weeden and J. D. Barnard (1993). Isozyme diversity in the cowpea species complex. Crop Science, 33: 606-613.
Verma, N., K. Kumar, G. Kaur and S. Anand (2007). L-asparaginase: A promising chemotherapeutic agent. Critical Reviews in Biotechnology, 27: 45-62.
Zannou, A., D. Kossou and A. Ahanchede (2008). Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphism DNA. AJB. 7: 4407-4414.
Weising, K., H. Nybom, K. Wolff and G. Khal (2005). DNA fingerprinting in plants (Principles, Methods And Applications), 2nd ed. CRC Press.
Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res., 18: 6531-6535.